論文の概要: Investigating Deep Learning Approaches for Hate Speech Detection in
Social Media
- arxiv url: http://arxiv.org/abs/2005.14690v1
- Date: Fri, 29 May 2020 17:28:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 23:20:57.087903
- Title: Investigating Deep Learning Approaches for Hate Speech Detection in
Social Media
- Title(参考訳): ソーシャルメディアにおけるヘイトスピーチ検出のための深層学習手法の検討
- Authors: Prashant Kapil, Asif Ekbal, Dipankar Das
- Abstract要約: 表現の自由の誤用は、様々なサイバー犯罪や反社会的活動の増加につながった。
ヘイトスピーチ(Hate speech)は、社会的ファブリックの完全性に脅威をもたらす可能性があるため、他の問題と同様に真剣に対処する必要がある。
本稿では,ソーシャルメディアにおける様々なヘイトスピーチの検出に様々な埋め込みを応用したディープラーニングアプローチを提案する。
- 参考スコア(独自算出の注目度): 20.974715256618754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The phenomenal growth on the internet has helped in empowering individual's
expressions, but the misuse of freedom of expression has also led to the
increase of various cyber crimes and anti-social activities. Hate speech is one
such issue that needs to be addressed very seriously as otherwise, this could
pose threats to the integrity of the social fabrics.
In this paper, we proposed deep learning approaches utilizing various
embeddings for detecting various types of hate speeches in social media.
Detecting hate speech from a large volume of text, especially tweets which
contains limited contextual information also poses several practical
challenges.
Moreover, the varieties in user-generated data and the presence of various
forms of hate speech makes it very challenging to identify the degree and
intention of the message. Our experiments on three publicly available datasets
of different domains shows a significant improvement in accuracy and F1-score.
- Abstract(参考訳): インターネット上の驚異的な成長は個人の表現力を高めるのに役立ったが、表現の自由の誤用は様々なサイバー犯罪や反社会的活動の増加にも繋がった。
ヘイトスピーチ(Hate speech)は、社会的ファブリックの完全性に脅威をもたらす可能性があるため、他の問題と同様に真剣に対処する必要がある。
本稿では,ソーシャルメディアにおける各種ヘイトスピーチの検出に,様々な埋め込みを用いたディープラーニング手法を提案する。
大量のテキスト、特に限られた文脈情報を含むツイートからヘイトスピーチを検出することは、いくつかの実践的な課題を引き起こす。
さらに, ユーザ生成データの多様性やヘイトスピーチの存在が, メッセージの程度や意図の特定を困難にしている。
異なる領域の3つの公開データセットに対する実験では、精度とF1スコアが大幅に向上した。
関連論文リスト
- CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
ツイストとカモフラージュキーワードは、プラットフォームコンテンツモデレーションシステムを回避する最もよく使われるテクニックである。
本稿では,コンテンツ回避の新たな手法をシミュレートし,検出する多言語ツールを開発することにより,悪意ある情報に対する対処に大きく貢献する。
論文 参考訳(メタデータ) (2022-12-27T16:08:49Z) - Assessing the impact of contextual information in hate speech detection [0.48369513656026514]
我々は,Twitter上のメディアからのニュース投稿に対するユーザの反応に基づいた,文脈的ヘイトスピーチ検出のための新しいコーパスを提供する。
このコーパスはリオプラテンセ方言のスペイン語で収集され、新型コロナウイルスのパンデミックに関連するヘイトスピーチに焦点を当てている。
論文 参考訳(メタデータ) (2022-10-02T09:04:47Z) - A Review of Challenges in Machine Learning based Automated Hate Speech
Detection [0.966840768820136]
我々は、ヘイトスピーチ識別のための機械学習やディープラーニングベースのソリューションが直面する課題に焦点を当てている。
トップレベルでは、データレベル、モデルレベル、人間レベルの課題を区別します。
この調査は、ヘイトスピーチ検出の分野で、研究者がより効率的にソリューションを設計するのに役立つだろう。
論文 参考訳(メタデータ) (2022-09-12T14:56:14Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
ここでは, ディープ・ヘイト・音声検出法と浅いヘイト・音声検出法を大規模に比較した。
私たちの目標は、この地域の進歩を照らし、現在の最先端の強みと弱点を特定することです。
そこで我々は,ヘイトスピーチ検出の実践的利用に関するガイダンスの提供,最先端の定量化,今後の研究方向の特定を目的としている。
論文 参考訳(メタデータ) (2022-02-19T03:48:20Z) - Emotion Based Hate Speech Detection using Multimodal Learning [0.0]
本稿では,感情を表す聴覚特徴と,ヘイトフルなコンテンツを検出する意味的特徴を組み合わせた,最初のマルチモーダル深層学習フレームワークを提案する。
以上の結果から,感情的属性を取り入れることで,ヘイトフルなマルチメディアコンテンツの検出におけるテキストベースモデルよりも顕著な改善がもたらされることが示唆された。
論文 参考訳(メタデータ) (2022-02-13T05:39:47Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - DeepHate: Hate Speech Detection via Multi-Faceted Text Representations [8.192671048046687]
DeepHateは、単語埋め込み、感情、トピック情報などの多面的なテキスト表現を組み合わせた、新しいディープラーニングモデルです。
大規模な実験を行い、3つの大規模公開現実世界のデータセットでDeepHateを評価します。
論文 参考訳(メタデータ) (2021-03-14T16:11:30Z) - Interpretable Multi-Modal Hate Speech Detection [32.36781061930129]
特定の憎悪表現が作られる社会文化的文脈とともに、テキストの意味を効果的に捉えることができるディープニューラルマルチモーダルモデルを提案する。
我々のモデルは、既存のヘイトスピーチ分類アプローチを上回ることができる。
論文 参考訳(メタデータ) (2021-03-02T10:12:26Z) - Speaker De-identification System using Autoencoders and Adversarial
Training [58.720142291102135]
本稿では,対人訓練とオートエンコーダに基づく話者識別システムを提案する。
実験結果から, 対向学習とオートエンコーダを組み合わせることで, 話者検証システムの誤り率が同等になることがわかった。
論文 参考訳(メタデータ) (2020-11-09T19:22:05Z) - Racism is a Virus: Anti-Asian Hate and Counterspeech in Social Media
during the COVID-19 Crisis [51.39895377836919]
新型コロナウイルスは、アジアのコミュニティをターゲットにしたソーシャルメディア上で人種差別や憎悪を引き起こしている。
我々は、Twitterのレンズを通して、反アジアヘイトスピーチの進化と普及について研究する。
私たちは、14ヶ月にわたる反アジア的憎悪と反音声のデータセットとして最大となるCOVID-HATEを作成します。
論文 参考訳(メタデータ) (2020-05-25T21:58:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。