論文の概要: Learning disentangled representations via product manifold projection
- arxiv url: http://arxiv.org/abs/2103.01638v1
- Date: Tue, 2 Mar 2021 10:59:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-04 11:55:13.849664
- Title: Learning disentangled representations via product manifold projection
- Title(参考訳): プロダクトマニホールドプロジェクションによる非絡み合い表現の学習
- Authors: Marco Fumero, Luca Cosmo, Simone Melzi, Emanuele Rodol\`a
- Abstract要約: そこで本研究では,ある観測セットの根底にある変化の生成因子を解き放つ新しい手法を提案する。
我々の手法は、データ空間の下の(未知の)低次元多様体を、部分多様体の積として明示的にモデル化できるという考えに基づいている。
- 参考スコア(独自算出の注目度): 10.677966716893762
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We propose a novel approach to disentangle the generative factors of
variation underlying a given set of observations. Our method builds upon the
idea that the (unknown) low-dimensional manifold underlying the data space can
be explicitly modeled as a product of submanifolds. This gives rise to a new
definition of disentanglement, and to a novel weakly-supervised algorithm for
recovering the unknown explanatory factors behind the data. At training time,
our algorithm only requires pairs of non i.i.d. data samples whose elements
share at least one, possibly multidimensional, generative factor of variation.
We require no knowledge on the nature of these transformations, and do not make
any limiting assumption on the properties of each subspace. Our approach is
easy to implement, and can be successfully applied to different kinds of data
(from images to 3D surfaces) undergoing arbitrary transformations. In addition
to standard synthetic benchmarks, we showcase our method in challenging
real-world applications, where we compare favorably with the state of the art.
- Abstract(参考訳): そこで本研究では,ある観測セットの根底にある変化の生成因子を解き放つ新しい手法を提案する。
我々の手法は、データ空間の下の(未知の)低次元多様体を、部分多様体の積として明示的にモデル化できるという考えに基づいている。
これにより、解束の新しい定義と、データの背後にある未知の説明要因を回復するための新しい弱監督アルゴリズムが生まれます。
トレーニング時に、アルゴリズムは非i.i.dのペアのみを必要とします。
要素が少なくとも1つ、おそらく多次元の変動の生成因子を共有するデータサンプル。
これらの変換の性質に関する知識を必要とせず、各部分空間の性質について限定的な仮定をしない。
我々の手法は実装が容易であり、任意の変換を行う様々な種類のデータ(画像から3次元表面まで)に適用することができる。
標準合成ベンチマークに加えて,本手法を実世界の課題に適用し,技術状況と良好に比較した。
関連論文リスト
- Tilt your Head: Activating the Hidden Spatial-Invariance of Classifiers [0.7704032792820767]
ディープニューラルネットワークは、日々の生活の多くの領域に適用されている。
これらは、空間的に変換された入力信号に頑健に対処するなど、依然として必須の能力が欠如している。
本稿では,ニューラルネットの推論過程をエミュレートする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-06T09:47:29Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot
Learning [55.79997930181418]
Generalized Zero-Shot Learningは、目に見えないクラスから見えないクラスに意味的な知識を移すことで、目に見えないクラスと見えないクラスの両方から画像を認識することを目的としている。
生成モデルの利点を生かして、見学したクラスから学んだ知識に基づいて、現実的な見知らぬサンプルを幻覚させることは、有望な解決策である。
本研究では,複数の条件付きアフィン結合層からなるフローベース生成フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-05T04:04:37Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
ほとんどの既存の多様体学習アルゴリズムは、元のデータを低次元座標で置き換える。
本稿では,これらの問題に対処するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-10-14T15:50:38Z) - Mitigating Generation Shifts for Generalized Zero-Shot Learning [52.98182124310114]
一般化ゼロショット学習(英: Generalized Zero-Shot Learning、GZSL)は、学習中に見知らぬクラスが観察できない、見つからないサンプルを認識するために意味情報(属性など)を活用するタスクである。
本稿では,未知のデータ合成を効率よく,効率的に学習するための新しい生成シフト緩和フローフレームワークを提案する。
実験結果から,GSMFlowは従来のゼロショット設定と一般化されたゼロショット設定の両方において,最先端の認識性能を実現することが示された。
論文 参考訳(メタデータ) (2021-07-07T11:43:59Z) - Learning Identity-Preserving Transformations on Data Manifolds [14.31845138586011]
多くの機械学習技術は、そのモデルにID保存変換を組み込んで、そのパフォーマンスをそれまで見つからなかったデータに一般化する。
本研究では,トランスフォーメーションラベルを必要としない学習戦略を開発し,各演算子を使用する可能性のある局所領域を学習する手法を開発する。
MNISTとFashion MNISTの実験は、マルチクラスのデータセットでID保存変換を学習するモデルの能力を強調している。
論文 参考訳(メタデータ) (2021-06-22T23:10:25Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
次元削減法は、高次元データの可視化と解釈に有用な手段を提供する。
多くの一般的な手法は単純な2次元のマニフォールドでも劇的に失敗する。
本稿では,グローバルな構造を座標として組み込んだ,新しいインクリメンタルな空間推定器の埋め込み手法を提案する。
実験により,本アルゴリズムは実世界および合成データセットに新規で興味深い埋め込みを復元することを示した。
論文 参考訳(メタデータ) (2020-07-07T10:04:28Z) - Normalizing Flows Across Dimensions [10.21537170623373]
我々は、次元をまたぐことができる正規化フローの一般化であるノイズ注入流(NIF)を導入する。
NIF は射影変換を用いて高次元データ空間内の学習可能な多様体にラテント空間を明示的にマッピングする。
実験により,本手法を既存のフローアーキテクチャに適用することにより,サンプルの品質を著しく向上し,分離可能なデータ埋め込みが得られることを示す。
論文 参考訳(メタデータ) (2020-06-23T14:47:18Z) - Disentangling by Subspace Diffusion [72.1895236605335]
データ多様体の完全教師なし分解は、多様体の真の計量が知られている場合、可能であることを示す。
我々の研究は、教師なしメートル法学習が可能であるかどうかという問題を減らし、表現学習の幾何学的性質に関する統一的な洞察を提供する。
論文 参考訳(メタデータ) (2020-06-23T13:33:19Z) - Evaluating the Disentanglement of Deep Generative Models through
Manifold Topology [66.06153115971732]
本稿では,生成モデルのみを用いた乱れの定量化手法を提案する。
複数のデータセットにまたがるいくつかの最先端モデルを実証的に評価する。
論文 参考訳(メタデータ) (2020-06-05T20:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。