論文の概要: Inferring Manifolds From Noisy Data Using Gaussian Processes
- arxiv url: http://arxiv.org/abs/2110.07478v3
- Date: Fri, 24 May 2024 22:35:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 05:05:50.142459
- Title: Inferring Manifolds From Noisy Data Using Gaussian Processes
- Title(参考訳): ガウス過程を用いた雑音データからのマニフォールド推定
- Authors: David B Dunson, Nan Wu,
- Abstract要約: ほとんどの既存の多様体学習アルゴリズムは、元のデータを低次元座標で置き換える。
本稿では,これらの問題に対処するための新しい手法を提案する。
- 参考スコア(独自算出の注目度): 17.166283428199634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In analyzing complex datasets, it is often of interest to infer lower dimensional structure underlying the higher dimensional observations. As a flexible class of nonlinear structures, it is common to focus on Riemannian manifolds. Most existing manifold learning algorithms replace the original data with lower dimensional coordinates without providing an estimate of the manifold in the observation space or using the manifold to denoise the original data. This article proposes a new methodology for addressing these problems, allowing interpolation of the estimated manifold between fitted data points. The proposed approach is motivated by novel theoretical properties of local covariance matrices constructed from noisy samples on a manifold. Our results enable us to turn a global manifold reconstruction problem into a local regression problem, allowing application of Gaussian processes for probabilistic manifold reconstruction. In addition to theory justifying the algorithm, we provide simulated and real data examples to illustrate the performance.
- Abstract(参考訳): 複雑なデータセットを分析する際には、高次元観測の基礎となる低次元構造を推測することがしばしば重要である。
非線形構造の柔軟なクラスとして、リーマン多様体にフォーカスすることが一般的である。
既存の多くの多様体学習アルゴリズムは、観測空間における多様体の見積もりを与えることなく、元のデータを低次元座標で置き換える。
本稿では,これらの問題に対処する新しい手法を提案し,データ点間の推定多様体の補間を可能にする。
提案手法は、多様体上の雑音サンプルから構築された局所共分散行列の新たな理論的性質によって動機付けられる。
この結果から,大域多様体再構成問題を局所回帰問題に変換することができ,確率的多様体再構成へのガウス過程の適用が可能となった。
理論的にアルゴリズムを正当化するだけでなく、シミュレーションされた実データ例も提供します。
関連論文リスト
- Persistent de Rham-Hodge Laplacians in Eulerian representation for manifold topological learning [7.0103981121698355]
多様体トポロジカルラーニングのための持続的ド・ラム・ホッジ・ラプラシアン(英語版)、または持続的ホッジ・ラプラシアン(英語版)を導入する。
我々のPHLは、カルテシアン格子を構造パーバーするユーレリア表現で構築されている。
本稿では,タンパク質-リガンド結合親和性の2つのベンチマークデータセットによる予測について考察する。
論文 参考訳(メタデータ) (2024-08-01T01:15:52Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
教師なし学習は、潜在的に大きな高次元データセットの基盤構造を捉えることを目的としている。
本研究では、最適輸送のレンズの下でこれらのアプローチを再検討し、Gromov-Wasserstein問題と関係を示す。
これにより、分散還元と呼ばれる新しい一般的なフレームワークが公開され、DRとクラスタリングを特別なケースとして回復し、単一の最適化問題内でそれらに共同で対処することができる。
論文 参考訳(メタデータ) (2024-02-03T19:00:19Z) - Implicit Manifold Gaussian Process Regression [49.0787777751317]
ガウス過程の回帰は、よく校正された不確実性推定を提供するために広く用いられている。
これは、データが実際に存在する暗黙の低次元多様体のため、高次元データに苦しむ。
本稿では,データ(ラベル付きおよびラベルなし)から直接暗黙構造を完全に微分可能な方法で推定できる手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T09:52:48Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
熱測地線埋め込みと呼ばれるより一般的な熱カーネルベースの多様体埋め込み法を提案する。
その結果,本手法は,地中真理多様体距離の保存において,既存の技術よりも優れていることがわかった。
また,連続体とクラスタ構造を併用した単一セルRNAシークエンシングデータセットに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-30T13:58:50Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Convolutional Filtering on Sampled Manifolds [122.06927400759021]
サンプル多様体上の畳み込みフィルタリングは連続多様体フィルタリングに収束することを示す。
本研究は,ナビゲーション制御の問題点を実証的に明らかにした。
論文 参考訳(メタデータ) (2022-11-20T19:09:50Z) - Normal-bundle Bootstrap [2.741266294612776]
本稿では,与えられたデータセットの幾何学的構造を保持する新しいデータを生成する手法を提案する。
微分幾何学における多様体学習と概念のアルゴリズムにインスパイアされた本手法は,基礎となる確率測度を余分化測度に分解する。
本手法は, 密度リッジおよび関連統計量の推定に応用し, オーバーフィッティングを低減するためにデータ拡張を行う。
論文 参考訳(メタデータ) (2020-07-27T21:14:19Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
次元削減法は、高次元データの可視化と解釈に有用な手段を提供する。
多くの一般的な手法は単純な2次元のマニフォールドでも劇的に失敗する。
本稿では,グローバルな構造を座標として組み込んだ,新しいインクリメンタルな空間推定器の埋め込み手法を提案する。
実験により,本アルゴリズムは実世界および合成データセットに新規で興味深い埋め込みを復元することを示した。
論文 参考訳(メタデータ) (2020-07-07T10:04:28Z) - Sample complexity and effective dimension for regression on manifolds [13.774258153124205]
ヒルベルト空間法を再現したカーネルを用いた多様体上の回帰理論を考える。
多様体上の滑らかな函数のある空間は、多様体次元に応じて拡大する複雑性を持つ実効有限次元であることが示される。
論文 参考訳(メタデータ) (2020-06-13T14:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。