Self-interaction induced phase modulation for directed current, energy diffusion and quantum scrambling in a Floquet ratchet system
- URL: http://arxiv.org/abs/2411.01059v1
- Date: Fri, 01 Nov 2024 22:17:24 GMT
- Title: Self-interaction induced phase modulation for directed current, energy diffusion and quantum scrambling in a Floquet ratchet system
- Authors: Jiejin Shi, Lihao Hua, Wenxuan Song, Wen-Lei Zhao,
- Abstract summary: We investigate the dynamics of directed current, mean energy, and quantum scrambling in an interacting Floquet system with a ratchet potential.
The directed current is controlled by the phase of the ratchet potential and remains independent of the self-interaction strength.
The phase modulation induced by self-interaction dominates the quadratic growth of both mean energy and Out-of-Time-Ordered Correlators (OTOCs)
- Score: 0.0
- License:
- Abstract: We investigate the wavepacket dynamics in an interacting Floquet system described by the Gross-Pitaevskii equation with a ratchet potential. Under quantum resonance conditions, we thoroughly examine the exotic dynamics of directed current, mean energy, and quantum scrambling, based on the exact expression of a time-evolving wavepacket. The directed current is controlled by the phase of the ratchet potential and remains independent of the self-interaction strength. Interestingly, the phase modulation induced by self-interaction dominates the quadratic growth of both mean energy and Out-of-Time-Ordered Correlators (OTOCs). In the quantum nonresonance condition, the disorder in momentum space, induced by the pseudorandom feature of the free evolution operator, suppresses the directed current at all times. Meanwhile, the disorder also leads to the dynamical localization of the mean energy and the freezing of quantum scrambling for initially finite time interval. The dynamical localization can be effectively manipulated by the phase, with underlying physics rooted in the different quasi-eigenenergy spectrum modulated by ratchet potential. Both the mean energy and OTOCs exponentially increase after long time evolution, which is governed by the classically chaotic dynamics dependent on the self-interaction. Possible applications of our findings on quantum control are discussed.
Related papers
- Evolution Dynamics Toward the Limit Cycle of a Quantum Self-Sustained Oscillator [0.0]
We investigate the evolution of a quantum Rayleigh-van der Pol (RvdP) oscillator with a quasiharmonic limit cycle.
One evolution toward the limit cycle may take much longer than another and a least-time parameter may be present.
We describe the resulting dynamics in terms of the coherence decay and the redistribution of eigenstate occupation.
arXiv Detail & Related papers (2024-06-18T07:05:11Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Dynamical transition of quantum scrambling in a non-Hermitian Floquet
synthetic system [0.0]
We investigate quantum scrambling in a non-Hermitian quantum kicked rotor subjected to quasi-periodical modulation in kicking potential.
We find the dynamical transition from the freezing phase to the chaotic scrambling phase, which is assisted by increasing the real part of the kicking potential.
The underlying mechanism is uncovered by the extension of the Floquet theory.
arXiv Detail & Related papers (2024-01-19T23:22:46Z) - Phase modulation of directed transport, energy diffusion and quantum
scrambling in a Floquet non-Hermitian system [3.250943494257319]
We investigate both theoretically and numerically the wavepacket's dynamics in momentum space for a Floquet non-Hermitian system.
We have deduced the exact expression of a time-evolving wavepacket under the condition of quantum resonance.
arXiv Detail & Related papers (2023-12-13T11:56:50Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Interaction-driven breakdown of dynamical localization in a kicked
quantum gas [0.0]
Quantum interference can terminate energy growth in a continually kicked system, via a single-particle ergodicity-breaking mechanism known as dynamical localization.
We report the experimental realization of a tunably-interacting kicked quantum rotor ensemble using a Bose-Einstein condensate in a pulsed optical lattice.
Results quantitatively elucidate the dynamical transition to many-body quantum chaos, advance our understanding of quantum anomalous diffusion, and delimit some possibilities for protecting quantum information in interacting systems.
arXiv Detail & Related papers (2021-06-17T17:52:55Z) - Open Quantum-System Simulation of Faraday's Induction Law via Dynamical
Instabilities [0.0]
We propose a novel type of a Bose-Hubbard ladder model to study the physics of dynamical gauge potentials.
A steady-state atomic motion along the legs of the ladder leads either to a pure chiral current, or generates simultaneously chiral and particle currents.
An electromotive force is induced in this dynamical regime as expected from an interpretation based on Faraday's law of induction for the time-dependent synthetic magnetic flux.
arXiv Detail & Related papers (2021-03-02T19:01:02Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.