A Mathematical Framework for Causally Structured Dilations and its
Relation to Quantum Self-Testing
- URL: http://arxiv.org/abs/2103.02302v1
- Date: Wed, 3 Mar 2021 10:32:34 GMT
- Title: A Mathematical Framework for Causally Structured Dilations and its
Relation to Quantum Self-Testing
- Authors: Nicholas Gauguin Houghton-Larsen
- Abstract summary: This thesis recast quantum self-testing [MY98,MY04] in operational terms.
An input-output process is modelled by a causally structured channel in some fixed theory.
implementations are modelled by causally structured dilations formalising hidden side-computations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The motivation for this thesis was to recast quantum self-testing [MY98,MY04]
in operational terms. The result is a category-theoretic framework for
discussing the following general question: How do different implementations of
the same input-output process compare to each other? In the proposed framework,
an input-output process is modelled by a causally structured channel in some
fixed theory, and its implementations are modelled by causally structured
dilations formalising hidden side-computations. These dilations compare through
a pre-order formalising relative strength of side-computations. Chapter 1
reviews a mathematical model for physical theories as semicartesian symmetric
monoidal categories. Many concrete examples are discussed, in particular
quantum and classical information theory. The key feature is that the model
facilitates the notion of dilations. Chapter 2 is devoted to the study of
dilations. It introduces a handful of simple yet potent axioms about dilations,
one of which (resembling the Purification Postulate [CDP10]) entails a duality
theorem encompassing a large number of classic no-go results for quantum
theory. Chapter 3 considers metric structure on physical theories, introducing
in particular a new metric for quantum channels, the purified diamond distance,
which generalises the purified distance [TCR10,Tom12] and relates to the Bures
distance [KSW08a]. Chapter 4 presents a category-theoretic formalism for
causality in terms of '(constructible) causal channels' and 'contractions'. It
simplifies aspects of the formalisms [CDP09,KU17] and relates to traces in
monoidal categories [JSV96]. The formalism allows for the definition of 'causal
dilations' and the establishment of a non-trivial theory of such dilations.
Chapter 5 realises quantum self-testing from the perspective of chapter 4, thus
pointing towards the first known operational foundation for self-testing.
Related papers
- Causal models in string diagrams [0.0]
The framework of causal models provides a principled approach to causal reasoning, applied today across many scientific domains.
We present this framework in the language of string diagrams, interpreted formally using category theory.
We argue and demonstrate that causal reasoning according to the causal model framework is most naturally and intuitively done as diagrammatic reasoning.
arXiv Detail & Related papers (2023-04-15T21:54:48Z) - A Semantics for Counterfactuals in Quantum Causal Models [0.0]
We introduce a formalism for the evaluation of counterfactual queries in the framework of quantum causal models.
We define a suitable extension of Pearl's notion of a 'classical structural causal model'
We show that every classical (probabilistic) structural causal model can be extended to a quantum structural causal model.
arXiv Detail & Related papers (2023-02-23T05:00:14Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - Generalized Gleason theorem and finite amount of information for the
context [0.0]
Quantum processes cannot be reduced to classical processes without specifying the context in the description of a measurement procedure.
We consider a class of hidden variable theories by assuming that the amount of information about the measurement context is finite.
arXiv Detail & Related papers (2022-06-23T16:55:50Z) - A Mathematical Framework for Transformations of Physical Processes [0.7614628596146599]
We observe that the existence of sequential and parallel composition supermaps in higher order physics can be formalised using enriched category theory.
We use the enriched monoidal setting to construct a suitable definition of structure preserving map between higher order physical theories.
In a second application we use our definition of structure preserving map to show that categories containing infinite towers of enriched monoidal categories with full and faithful structure preserving maps between them inevitably lead to closed monoidal structures.
arXiv Detail & Related papers (2022-04-08T22:53:02Z) - Causality in Higher Order Process Theories [0.7614628596146599]
We provide an equivalent construction of the HOPT framework from four simple axioms of process-theoretic nature.
We then use the HOPT framework to establish connections between foundational features such as causality, determinism and signalling.
arXiv Detail & Related papers (2021-07-30T12:36:12Z) - Proof of the Contiguity Conjecture and Lognormal Limit for the Symmetric
Perceptron [21.356438315715888]
We consider the symmetric binary perceptron model, a simple model of neural networks.
We establish several conjectures for this model.
Our proof technique relies on a dense counter-part of the small graph conditioning method.
arXiv Detail & Related papers (2021-02-25T18:39:08Z) - Causal Expectation-Maximisation [70.45873402967297]
We show that causal inference is NP-hard even in models characterised by polytree-shaped graphs.
We introduce the causal EM algorithm to reconstruct the uncertainty about the latent variables from data about categorical manifest variables.
We argue that there appears to be an unnoticed limitation to the trending idea that counterfactual bounds can often be computed without knowledge of the structural equations.
arXiv Detail & Related papers (2020-11-04T10:25:13Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.