論文の概要: Cost Optimal Planning as Satisfiability
- arxiv url: http://arxiv.org/abs/2103.02355v1
- Date: Wed, 3 Mar 2021 12:18:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-04 14:52:39.623088
- Title: Cost Optimal Planning as Satisfiability
- Title(参考訳): 満足度としてのコスト最適計画
- Authors: Mohammad Abdulaziz
- Abstract要約: コストを考慮したsatベースの計画符号化の地平線として,コスト最適計画の長さの上限を用いる。
このSATベースのアプローチにより、より優れたコストでプランを計算できることを実験的に示し、多くの場合、最適なコストに適合できることを示した。
- 参考スコア(独自算出の注目度): 5.482532589225552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate upper bounds on the length of cost optimal plans that are
valid for problems with 0-cost actions. We employ these upper bounds as
horizons for a SAT-based encoding of planning with costs. Given an initial
upper bound on the cost of the optimal plan, we experimentally show that this
SAT-based approach is able to compute plans with better costs, and in many
cases it can match the optimal cost. Also, in multiple instances, the approach
is successful in proving that a certain cost is the optimal plan cost.
- Abstract(参考訳): 0コストアクションの問題に有効なコスト最適プランの長さに関する上限を調査します。
これらの上界を地平線として、SATベースのコストで計画をエンコーディングします。
最適計画のコストに初期上限が与えられると、このSATベースのアプローチはより良いコストで計画を計算することができ、多くの場合、最適コストと一致することが実験的に示される。
また、複数のケースにおいて、あるコストが最適な計画コストであることを証明する手法が成功している。
関連論文リスト
- Cost-aware Bayesian optimization via the Pandora's Box Gittins index [51.73521008427514]
我々は,コストを意識したベイズ最適化と,経済学の意思決定問題であるPandoraのBox問題との間に,従来未解決の接続関係を構築した。
我々の研究は、Gittinsインデックス理論からベイズ最適化への技術統合に向けた第一歩となる。
論文 参考訳(メタデータ) (2024-06-28T17:20:13Z) - Adaptive Selection for Homogeneous Tools: An Instantiation in the RAG Scenario [62.615210194004106]
ツール学習に関する現在の研究は、主に様々な選択肢から最も効果的なツールを選択することに焦点を当てており、しばしば費用対効果を見落としている。
本稿では,タスクの達成に必要な性能と関連するコストの両方を予測し,同種ツールの選択に対処する。
論文 参考訳(メタデータ) (2024-06-18T09:24:09Z) - Rate-Optimal Policy Optimization for Linear Markov Decision Processes [65.5958446762678]
最安値の$widetilde O (sqrt K)$ regret, $K$はエピソード数を表す。
我々の研究は、バンディットフィードバックのある設定において最適な収束率(w.r.t.$K$)を確立する最初のものである。
現在、最適なレート保証を持つアルゴリズムは知られていない。
論文 参考訳(メタデータ) (2023-08-28T15:16:09Z) - Landscape Surrogate: Learning Decision Losses for Mathematical
Optimization Under Partial Information [48.784330281177446]
学習統合最適化の最近の研究は、最適化が部分的にのみ観察される場合や、専門家のチューニングなしに汎用性が不十分な環境では有望であることを示している。
本稿では,$fcirc mathbfg$の代替として,スムーズで学習可能なランドスケープサロゲートを提案する。
このサロゲートはニューラルネットワークによって学習可能で、$mathbfg$ソルバよりも高速に計算でき、トレーニング中に密度が高く滑らかな勾配を提供し、目に見えない最適化問題に一般化でき、交互最適化によって効率的に学習される。
論文 参考訳(メタデータ) (2023-07-18T04:29:16Z) - Planning with Dynamically Estimated Action Costs [2.8326418377665346]
実際のAI計画アプリケーションには、アクションコストに関する情報が不可欠だ。
近年のアプローチでは、データからしばしば学習されるブラックボックス外部アクションコスト推定器が計画段階で適用されている。
本稿では,行動コストを考慮した決定論的計画の一般化を提案する。
論文 参考訳(メタデータ) (2022-06-08T21:10:37Z) - Neural Optimal Transport with General Cost Functionals [66.41953045707172]
一般費用関数の最適輸送計画を計算するニューラルネットワークに基づく新しいアルゴリズムを提案する。
アプリケーションとして,クラス単位の構造を保ちながら,データ分布をマップするコスト関数を構築した。
論文 参考訳(メタデータ) (2022-05-30T20:00:19Z) - Multi-Step Budgeted Bayesian Optimization with Unknown Evaluation Costs [28.254408148839644]
不均一な評価コストの設定に古典的な期待改善を一般化する非筋力的獲得関数を提案する。
我々の獲得関数は、様々な合成問題や実問題において、既存の手法よりも優れています。
論文 参考訳(メタデータ) (2021-11-12T02:18:26Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - Optimal Cost Design for Model Predictive Control [30.86835688868485]
多くのロボティクスドメインは、計画に非モデル制御(MPC)を使用し、時間的地平線を減らし、最適化を行い、各ステップで再計画を行う。
本研究では, MPC を用いて最適化するコストは, タスクの真理コスト(端末コスト)と同等である,という一般的な仮定に挑戦する。
連続型MDPにおけるMPC計画ロボットの最適コストを設計できるゼロ階トラジェクトリに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-04-23T00:00:58Z) - A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation,
Cost Model, and Plan Enumeration [17.75042918159419]
コストベースのアルゴリズムは、現在のほとんどのデータベースシステムで採用されている。
コストモデル、カーディナリティでは、オペレータによる数字の数は重要な役割を果たします。
基数推定の不正確さ、コストの誤差、および巨大な計画空間モデルにより、アルゴリズムは複雑なクエリに対して妥当な時間で最適な実行計画を見つけることができない。
論文 参考訳(メタデータ) (2021-01-05T13:47:45Z) - Cost-aware Bayesian Optimization [6.75013674088437]
コストを意識したBOは、時間、エネルギー、お金といった他のコスト指標との収束を測定します。
我々は,目標関数をできるだけ少ないコストで最小化しようとするコスト調整BO(CArBO)を導入する。
論文 参考訳(メタデータ) (2020-03-22T14:51:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。