Filter Functions for Quantum Processes under Correlated Noise
- URL: http://arxiv.org/abs/2103.02385v2
- Date: Mon, 25 Oct 2021 13:52:27 GMT
- Title: Filter Functions for Quantum Processes under Correlated Noise
- Authors: Pascal Cerfontaine, Tobias Hangleiter, Hendrik Bluhm
- Abstract summary: We develop a method based on the filter function formalism to perturbatively compute quantum processes in the presence of correlated noise.
We show that correlation terms arise which capture the effects of the concatenation and thus yield insight into the effect of noise correlations on gate sequences.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many qubit implementations are afflicted by correlated noise not captured by
standard theoretical tools that are based on Markov approximations. While
independent gate operations are a key concept for quantum computing, it is
actually not possible to fully describe noisy gates locally in time if noise is
correlated on times longer than their duration. To address this issue, we
develop a method based on the filter function formalism to perturbatively
compute quantum processes in the presence of correlated classical noise. We
derive a composition rule for the filter function of a sequence of gates in
terms of those of the individual gates. The joint filter function allows to
efficiently compute the quantum process of the whole sequence. Moreover, we
show that correlation terms arise which capture the effects of the
concatenation and thus yield insight into the effect of noise correlations on
gate sequences. Our generalization of the filter function formalism enables
both qualitative and quantitative studies of algorithms and state-of-the-art
tools widely used for the experimental verification of gate fidelities like
randomized benchmarking, even in the presence of noise correlations.
Related papers
- Microscopic parametrizations for gate set tomography under coloured noise [0.0]
We show that a microscopic parametrization of quantum gates under time-correlated noise on the driving phase reduces the required resources.
We discuss the minimal parametrizations of the gate set that include the effect of finite correlation times and non-Markovian quantum evolutions.
arXiv Detail & Related papers (2024-07-16T09:39:52Z) - Open-loop quantum control of small-size networks for high-order
cumulants and cross-correlations sensing [0.0]
We investigate dynamical decoupling while processing an entangling two-qubit gate based on an Ising-xx interaction.
By exploiting the properties of selected pulse sequences, we show that it is possible to extract the second-order statistics.
We discuss the applicability of these results to state-of-the-art small networks based on solid-state platforms.
arXiv Detail & Related papers (2024-01-11T09:17:34Z) - Majorization-based benchmark of the complexity of quantum processors [105.54048699217668]
We numerically simulate and characterize the operation of various quantum processors.
We identify and assess quantum complexity by comparing the performance of each device against benchmark lines.
We find that the majorization-based benchmark holds as long as the circuits' output states have, on average, high purity.
arXiv Detail & Related papers (2023-04-10T23:01:10Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Characterizing low-frequency qubit noise [55.41644538483948]
Fluctuations of the qubit frequencies are one of the major problems to overcome on the way to scalable quantum computers.
The statistics of the fluctuations can be characterized by measuring the correlators of the outcomes of periodically repeated Ramsey measurements.
This work suggests a method that allows describing qubit dynamics during repeated measurements in the presence of evolving noise.
arXiv Detail & Related papers (2022-07-04T22:48:43Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Analytic Filter Function Derivatives for Quantum Optimal Control [0.0]
We focus on the filter function formalism, which allows the computation of gate fidelities in the presence of auto-correlated noise.
We present analytically derived filter function gradients with respect to control pulse amplitudes, and analyze the computational complexity of our results.
arXiv Detail & Related papers (2021-03-16T15:13:58Z) - Filter Function Formalism and Software Package to Compute Quantum
Processes of Gate Sequences for Classical Non-Markovian Noise [0.0]
Correlated, non-Markovian noise is present in many solid-state systems employed as hosts for quantum information technologies.
We show it can be applied to describe unital evolution within the quantum operations formalism.
arXiv Detail & Related papers (2021-03-03T13:54:12Z) - Efficient classical simulation and benchmarking of quantum processes in
the Weyl basis [0.0]
We develop a randomized benchmarking algorithm which uses Weyl unitaries to efficiently identify and learn a mixture of error models.
We apply our methods to ansatz circuits that appear in the Variational Quantum Eigensolver.
arXiv Detail & Related papers (2020-08-27T16:46:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.