Microscopic parametrizations for gate set tomography under coloured noise
- URL: http://arxiv.org/abs/2407.11539v2
- Date: Wed, 31 Jul 2024 10:36:01 GMT
- Title: Microscopic parametrizations for gate set tomography under coloured noise
- Authors: P. ViƱas, A. Bermudez,
- Abstract summary: We show that a microscopic parametrization of quantum gates under time-correlated noise on the driving phase reduces the required resources.
We discuss the minimal parametrizations of the gate set that include the effect of finite correlation times and non-Markovian quantum evolutions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gate set tomography (GST) allows for a self-consistent characterization of noisy quantum information processors. The standard device-agnostic approach treats the QIPs as black boxes that are only constrained by the laws of physics, attaining full generality at a considerable resource cost: numerous circuits built from the gate set must be run in order to amplify each of the gate set parameters. In this work, we show that a microscopic parametrization of quantum gates under time-correlated noise on the driving phase, motivated by recent experiments with trapped-ion gates, reduces the required resources enabling a more efficient version of GST. By making use of the formalism of filter functions over the noise spectral densities, we discuss the minimal parametrizations of the gate set that include the effect of finite correlation times and non-Markovian quantum evolutions during the individual gates. We compare the estimated gate sets obtained by our method and the standard long-sequence GST, discussing their accuracies in terms of established metrics, as well as showcasing the advantages of the parametrized approach in terms of the sampling complexity for specific examples.
Related papers
- Generalized phase estimation in noisy quantum gates [0.0]
We focus on qubit gates and consider the possibility of employing successive applications of the gate.
We model the dephasing and tilting noise affecting qubit rotations as classical fluctuations governed by a Von Mises-Fisher distribution.
arXiv Detail & Related papers (2024-06-03T17:59:33Z) - Majorization-based benchmark of the complexity of quantum processors [105.54048699217668]
We numerically simulate and characterize the operation of various quantum processors.
We identify and assess quantum complexity by comparing the performance of each device against benchmark lines.
We find that the majorization-based benchmark holds as long as the circuits' output states have, on average, high purity.
arXiv Detail & Related papers (2023-04-10T23:01:10Z) - Benchmarking universal quantum gates via channel spectrum [0.0]
Noise remains the major obstacle to scalable quantum computation.
We propose a method to infer the noise properties of the target gate, including process fidelity, fidelity, and some unitary parameters, from the eigenvalues of its noisy channel.
Our method is insensitive to state-preparation and measurement errors, and importantly, can benchmark universal gates and is scalable to many-qubit systems.
arXiv Detail & Related papers (2023-01-05T13:18:19Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Continuous quantum gate sets and pulse class meta-optimization [0.0]
We show that learning families of optimal control pulses depend adaptively on various parameters, in order to obtain a global optimal mapping from the space of potential parameter values to the control space.
Our proposed method is tested on different experimentally relevant quantum gates and proves capable of producing high-fidelity pulses even in presence of multiple variable or uncertain parameters with wide ranges.
arXiv Detail & Related papers (2022-03-25T11:43:40Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Estimating gate-set properties from random sequences [0.0]
Current quantum devices are only capable of short unstructured gate sequences followed by native measurements.
A single experiment - random sequence estimation - solves a wealth of estimation problems.
We derive robust channel variants of shadow estimation with close-to-optimal performance guarantees.
arXiv Detail & Related papers (2021-10-25T18:01:25Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Filter Functions for Quantum Processes under Correlated Noise [0.0]
We develop a method based on the filter function formalism to perturbatively compute quantum processes in the presence of correlated noise.
We show that correlation terms arise which capture the effects of the concatenation and thus yield insight into the effect of noise correlations on gate sequences.
arXiv Detail & Related papers (2021-03-03T13:22:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.