論文の概要: Sparsity Aware Normalization for GANs
- arxiv url: http://arxiv.org/abs/2103.02458v1
- Date: Wed, 3 Mar 2021 15:05:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-04 14:50:32.642014
- Title: Sparsity Aware Normalization for GANs
- Title(参考訳): ganのsparsity aware正規化
- Authors: Idan Kligvasser, Tomer Michaeli
- Abstract要約: GAN(Generative adversarial Network)は、トレーニング中の批判的(差別的)ネットワークの正規化または正規化の恩恵を受けることが知られている。
本稿では,一般のスペクトル正規化スキームを分析し,有意な欠点を見つけ,GANトレーニングの安定化のための新たなアプローチであるスパーシャリティ認識正規化(SAN)を導入する。
- 参考スコア(独自算出の注目度): 32.76828505875087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative adversarial networks (GANs) are known to benefit from
regularization or normalization of their critic (discriminator) network during
training. In this paper, we analyze the popular spectral normalization scheme,
find a significant drawback and introduce sparsity aware normalization (SAN), a
new alternative approach for stabilizing GAN training. As opposed to other
normalization methods, our approach explicitly accounts for the sparse nature
of the feature maps in convolutional networks with ReLU activations. We
illustrate the effectiveness of our method through extensive experiments with a
variety of network architectures. As we show, sparsity is particularly dominant
in critics used for image-to-image translation settings. In these cases our
approach improves upon existing methods, in less training epochs and with
smaller capacity networks, while requiring practically no computational
overhead.
- Abstract(参考訳): GAN(Generative adversarial Network)は、トレーニング中の批判的(差別的)ネットワークの正規化または正規化の恩恵を受けることが知られている。
本稿では,一般のスペクトル正規化スキームを分析し,有意な欠点を見つけ,GANトレーニングの安定化のための新たなアプローチであるスパーシャリティ認識正規化(SAN)を導入する。
他の正規化手法とは対照的に,提案手法はReLUアクティベーションを伴う畳み込みネットワークにおける特徴写像のスパースの性質を明示的に説明する。
多様なネットワークアーキテクチャを用いた広範な実験により,本手法の有効性を実証する。
画像から画像への翻訳設定で使われる批評家では、sparsityが特に優勢だ。
これらの場合、我々のアプローチは既存の手法を改良し、訓練エポックを減らし、キャパシティネットワークを小さくし、計算オーバーヘッドを実質的に必要としない。
関連論文リスト
- NL-CS Net: Deep Learning with Non-Local Prior for Image Compressive
Sensing [7.600617428107161]
近年,画像の圧縮センシング(CS)にディープラーニングが応用されている。
本稿では,従来の最適化手法の解釈可能性と,NL-CS Netと呼ばれるネットワークベース手法の高速化を併用した,非局所的前処理を用いた新しいCS手法を提案する。
論文 参考訳(メタデータ) (2023-05-06T02:34:28Z) - Low-light Image Enhancement by Retinex Based Algorithm Unrolling and
Adjustment [50.13230641857892]
本稿では,低照度画像強調(LIE)問題に対する新たなディープラーニングフレームワークを提案する。
提案フレームワークは,大域的明るさと局所的明るさ感度の両方を考慮したアルゴリズムアンロールと調整ネットワークに着想を得た分解ネットワークを含む。
一連の典型的なLIEデータセットの実験では,既存の手法と比較して,定量的かつ視覚的に,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-02-12T03:59:38Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
本稿では,セマンティックセグメンテーションのためのクロスドメインデータを利用した自己理解型生成逆数ネットワーク(SE-GAN)を提案する。
SE-GANでは、教師ネットワークと学生ネットワークは、意味分節マップを生成するための自己組織化モデルを構成する。
その単純さにもかかわらず、SE-GANは敵の訓練性能を大幅に向上させ、モデルの安定性を高めることができる。
論文 参考訳(メタデータ) (2021-12-15T09:50:25Z) - Convergence Analysis and Implicit Regularization of Feedback Alignment
for Deep Linear Networks [27.614609336582568]
ニューラルネットワークのトレーニングのためのバックプロパゲーションの効率的な代替手段であるフィードバックアライメント(FA)アルゴリズムを理論的に解析する。
我々は、連続力学と離散力学の両方に対して、ディープ線形ネットワークのレートで収束保証を提供する。
論文 参考訳(メタデータ) (2021-10-20T22:57:03Z) - Distribution Mismatch Correction for Improved Robustness in Deep Neural
Networks [86.42889611784855]
正規化法は ノイズや入力の腐敗に関して 脆弱性を増大させる
本稿では,各層の活性化分布に適応する非教師なし非パラメトリック分布補正法を提案する。
実験により,提案手法は画像劣化の激しい影響を効果的に低減することを示した。
論文 参考訳(メタデータ) (2021-10-05T11:36:25Z) - Embracing the Dark Knowledge: Domain Generalization Using Regularized
Knowledge Distillation [65.79387438988554]
十分なデータと代表データがない場合の一般化能力の欠如は、その実践的応用を妨げる課題の1つである。
我々はKDDG(Knowledge Distillation for Domain Generalization)という,シンプルで効果的な,プラグアンドプレイのトレーニング戦略を提案する。
教師ネットワークからの「より豊かな暗黒知識」と、我々が提案した勾配フィルタの両方が、マッピングの学習の難しさを軽減することができる。
論文 参考訳(メタデータ) (2021-07-06T14:08:54Z) - On the Explicit Role of Initialization on the Convergence and Implicit
Bias of Overparametrized Linear Networks [1.0323063834827415]
勾配流下で訓練された単層線形ネットワークの新たな解析法を提案する。
正方形損失はその最適値に指数関数的に収束することを示す。
我々は、トレーニングされたネットワークとmin-norm解の間の距離に基づいて、新しい非漸近上界を導出する。
論文 参考訳(メタデータ) (2021-05-13T15:13:51Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
そこで我々は,局所的批判訓練と呼ばれる新しいモデル並列学習手法を提案する。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
また,提案手法によりトレーニングされたネットワークを構造最適化に利用できることを示す。
論文 参考訳(メタデータ) (2021-02-03T09:30:45Z) - Keep the Gradients Flowing: Using Gradient Flow to Study Sparse Network
Optimization [16.85167651136133]
スパースネットワークのトレーニングについて、より広い視点で考察し、スパースモデルにおける正規化、最適化、アーキテクチャ選択の役割について考察する。
アーキテクチャ設計とトレーニング体制の側面を再考することにより,スパースネットワーク内の勾配流を改善することができることを示す。
論文 参考訳(メタデータ) (2021-02-02T18:40:26Z) - Normalization Techniques in Training DNNs: Methodology, Analysis and
Application [111.82265258916397]
ディープニューラルネットワーク(DNN)のトレーニングを加速し、一般化を改善するためには、正規化技術が不可欠である
本稿では,トレーニングの文脈における正規化手法の過去,現在,未来に関するレビューとコメントを行う。
論文 参考訳(メタデータ) (2020-09-27T13:06:52Z) - Fiedler Regularization: Learning Neural Networks with Graph Sparsity [6.09170287691728]
ニューラルネットワークの基盤となるグラフィカル構造を包含し、尊重する、ディープラーニングのための新しい正規化アプローチを導入する。
我々は、ニューラルネットワークの基盤となるグラフのFiedler値を正規化のツールとして使うことを提案する。
論文 参考訳(メタデータ) (2020-03-02T16:19:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。