論文の概要: Malware Classification Using Long Short-Term Memory Models
- arxiv url: http://arxiv.org/abs/2103.02746v1
- Date: Wed, 3 Mar 2021 23:14:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-07 10:33:26.535328
- Title: Malware Classification Using Long Short-Term Memory Models
- Title(参考訳): 長期記憶モデルを用いたマルウェア分類
- Authors: Dennis Dang and Fabio Di Troia and Mark Stamp
- Abstract要約: LSTM(Long-Short term memory)ベースの4つのモデルを作成し、20家族のマルウェアサンプルを分類するように訓練する。
自然言語処理(NLP)において,単語埋め込みや双方向LSTMなどの手法を用いる。
マルウェア分類実験において,単語埋め込み,biLSTM,CNN層からなるモデルが最適であることがわかった。
- 参考スコア(独自算出の注目度): 6.961253535504979
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Signature and anomaly based techniques are the quintessential approaches to
malware detection. However, these techniques have become increasingly
ineffective as malware has become more sophisticated and complex. Researchers
have therefore turned to deep learning to construct better performing model. In
this paper, we create four different long-short term memory (LSTM) based models
and train each to classify malware samples from 20 families. Our features
consist of opcodes extracted from malware executables. We employ techniques
used in natural language processing (NLP), including word embedding and
bidirection LSTMs (biLSTM), and we also use convolutional neural networks
(CNN). We find that a model consisting of word embedding, biLSTMs, and CNN
layers performs best in our malware classification experiments.
- Abstract(参考訳): シグネチャーと異常ベースの技術は、マルウェア検出に不可欠なアプローチです。
しかし、マルウェアの高度化と複雑化に伴い、これらの技術はますます非効率化している。
そのため、研究者はより優れたパフォーマンスモデルを構築するために深層学習に移行した。
本論文では,4種類の長期記憶モデル(LSTM)モデルを作成し,それぞれ20ファミリーのマルウェアサンプルを分類する訓練を行う。
マルウェアから抽出したオペコードを特徴とする。
自然言語処理 (NLP) において, 単語埋め込みや双方向LSTM (biLSTM) などの手法を用いており, 畳み込みニューラルネットワーク (CNN) も採用している。
マルウェア分類実験において,単語埋め込み,biLSTM,CNN層からなるモデルが最適であることがわかった。
関連論文リスト
- Relation-aware based Siamese Denoising Autoencoder for Malware Few-shot Classification [6.7203034724385935]
マルウェアが目に見えないゼロデイエクスプロイトを採用した場合、従来のセキュリティ対策では検出できない可能性がある。
既存の機械学習手法は、特定の時代遅れのマルウェアサンプルに基づいて訓練されており、新しいマルウェアの機能に適応するのに苦労する可能性がある。
そこで我々は,より正確な類似性確率を計算するために,関係認識型埋め込みを用いた新しいシームズニューラルネットワーク(SNN)を提案する。
論文 参考訳(メタデータ) (2024-11-21T11:29:10Z) - Masked LoGoNet: Fast and Accurate 3D Image Analysis for Medical Domain [48.440691680864745]
我々はLoGoNetと呼ばれる新しいニューラルネットワークアーキテクチャを導入する。
LoGoNetは、LKA(Large Kernel Attention)とデュアルエンコーディング戦略を利用して、U字型アーキテクチャに新しい特徴抽出器を統合する。
大規模ラベル付きデータセットの欠如を補うために,3次元画像に適した新しいSSL方式を提案する。
論文 参考訳(メタデータ) (2024-02-09T05:06:58Z) - New Approach to Malware Detection Using Optimized Convolutional Neural
Network [0.0]
本稿では,マルウェアを高精度で高精度かつ効率的に検出する,新しい畳み込み型ディープラーニングニューラルネットワークを提案する。
ベースラインモデルは当初98%の精度を達成していたが、CNNモデルの深度を高めた後、99.183まで精度が向上した。
このCNNモデルの有効性をさらに高めるため、改良されたモデルを用いて、データセット内の新しいマルウェアサンプルの予測を行う。
論文 参考訳(メタデータ) (2023-01-26T15:06:47Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
本稿では,加速度センサデータに基づくジェスチャー認識と画像分類の2つの実例として,最先端の4つのアルゴリズムを比較した。
以上の結果から,これらのシステムの信頼性と小型メモリMCUへのデプロイの可能性が確認された。
論文 参考訳(メタデータ) (2022-09-01T17:05:20Z) - Task-Aware Meta Learning-based Siamese Neural Network for Classifying
Obfuscated Malware [5.293553970082943]
既存のマルウェア検出方法は、トレーニングデータセットに難読化されたマルウェアサンプルが存在する場合、異なるマルウェアファミリーを正しく分類できない。
そこで我々は,このような制御フロー難読化技術に対して耐性を持つ,タスク対応の複数ショット学習型サイメスニューラルネットワークを提案する。
提案手法は,同一のマルウェアファミリーに属するマルウェアサンプルを正しく分類し,ユニークなマルウェアシグネチャの認識に極めて有効である。
論文 参考訳(メタデータ) (2021-10-26T04:44:13Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Binary Black-box Evasion Attacks Against Deep Learning-based Static
Malware Detectors with Adversarial Byte-Level Language Model [11.701290164823142]
MalRNNは、制限なく回避可能なマルウェアバリアントを自動的に生成する新しいアプローチです。
MalRNNは、3つの最近のディープラーニングベースのマルウェア検出器を効果的に回避し、現在のベンチマークメソッドを上回ります。
論文 参考訳(メタデータ) (2020-12-14T22:54:53Z) - Classifying Malware Images with Convolutional Neural Network Models [2.363388546004777]
本稿では,静的マルウェア分類にいくつかの畳み込みニューラルネットワーク(CNN)モデルを用いる。
インセプションV3モデルは99.24%の精度を達成しており、現在の最先端システムによって達成される98.52%の精度よりも優れている。
論文 参考訳(メタデータ) (2020-10-30T07:39:30Z) - Depth-Adaptive Graph Recurrent Network for Text Classification [71.20237659479703]
S-LSTM(Sentence-State LSTM)は、高効率なグラフリカレントネットワークである。
そこで本研究では,S-LSTMの深度適応機構を提案する。
論文 参考訳(メタデータ) (2020-02-29T03:09:55Z) - The Microsoft Toolkit of Multi-Task Deep Neural Networks for Natural
Language Understanding [97.85957811603251]
MT-DNNはオープンソースの自然言語理解(NLU)ツールキットであり、研究者や開発者がカスタマイズされたディープラーニングモデルを訓練しやすくする。
PyTorchとTransformersをベースとして開発されたMT-DNNは、幅広いNLUタスクの迅速なカスタマイズを容易にするように設計されている。
MT-DNNのユニークな特徴は、対戦型マルチタスク学習パラダイムを用いた堅牢で移動可能な学習のサポートである。
論文 参考訳(メタデータ) (2020-02-19T03:05:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。