STEP: Stochastic Traversability Evaluation and Planning for Safe
Off-road Navigation
- URL: http://arxiv.org/abs/2103.02828v1
- Date: Thu, 4 Mar 2021 04:24:19 GMT
- Title: STEP: Stochastic Traversability Evaluation and Planning for Safe
Off-road Navigation
- Authors: David D. Fan, Kyohei Otsu, Yuki Kubo, Anushri Dixit, Joel Burdick, and
Ali-Akbar Agha-Mohammadi
- Abstract summary: We propose an approach for assessing traversability and planning a safe, feasible, and fast trajectory in real-time.
Our approach relies on: 1) rapid uncertainty-aware mapping and traversability evaluation, 2) tail risk assessment using the Conditional Value-at-Risk (CVaR), and 3) efficient risk and constraint-aware kinodynamic motion planning.
We analyze our method in simulation and validate its efficacy on wheeled and legged robotic platforms exploring extreme terrains including an underground lava tube.
- Score: 9.423950528323893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although ground robotic autonomy has gained widespread usage in structured
and controlled environments, autonomy in unknown and off-road terrain remains a
difficult problem. Extreme, off-road, and unstructured environments such as
undeveloped wilderness, caves, and rubble pose unique and challenging problems
for autonomous navigation. To tackle these problems we propose an approach for
assessing traversability and planning a safe, feasible, and fast trajectory in
real-time. Our approach, which we name STEP (Stochastic Traversability
Evaluation and Planning), relies on: 1) rapid uncertainty-aware mapping and
traversability evaluation, 2) tail risk assessment using the Conditional
Value-at-Risk (CVaR), and 3) efficient risk and constraint-aware kinodynamic
motion planning using sequential quadratic programming-based (SQP) model
predictive control (MPC). We analyze our method in simulation and validate its
efficacy on wheeled and legged robotic platforms exploring extreme terrains
including an underground lava tube.
Related papers
- Evaluating Robustness of Reinforcement Learning Algorithms for Autonomous Shipping [2.9109581496560044]
This paper examines the robustness of benchmark deep reinforcement learning (RL) algorithms, implemented for inland waterway transport (IWT) within an autonomous shipping simulator.
We show that a model-free approach can achieve an adequate policy in the simulator, successfully navigating port environments never encountered during training.
arXiv Detail & Related papers (2024-11-07T17:55:07Z) - ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable [88.08120417169971]
Machine learning based autonomous driving systems often face challenges with safety-critical scenarios that are rare in real-world data.
This work explores generating safety-critical driving scenarios by modifying complex real-world regular scenarios through trajectory optimization.
Our approach addresses unrealistic diverging trajectories and unavoidable collision scenarios that are not useful for training robust planner.
arXiv Detail & Related papers (2024-09-12T08:26:33Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
We propose a reinforcement learning framework that combines risk-sensitive control with an adaptive action space curriculum.
We show that our algorithm is capable of learning high-speed policies for a real-world off-road driving task.
arXiv Detail & Related papers (2024-05-07T23:32:36Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - A Safer Vision-based Autonomous Planning System for Quadrotor UAVs with
Dynamic Obstacle Trajectory Prediction and Its Application with LLMs [6.747468447244154]
This paper proposes a vision-based planning system that combines tracking and trajectory prediction of dynamic obstacles to achieve efficient and reliable autonomous flight.
We conduct experiments in both simulation and real-world environments, and the results indicate that our approach can successfully detect and avoid obstacles in dynamic environments in real-time.
arXiv Detail & Related papers (2023-11-21T08:09:00Z) - EVORA: Deep Evidential Traversability Learning for Risk-Aware Off-Road Autonomy [34.19779754333234]
This work proposes a unified framework to learn uncertainty-aware traction model and plan risk-aware trajectories.
We parameterize Dirichlet distributions with the network outputs and propose a novel uncertainty-aware squared Earth Mover's distance loss.
Our approach is extensively validated in simulation and on wheeled and quadruped robots.
arXiv Detail & Related papers (2023-11-10T18:49:53Z) - RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
Road surface reconstruction helps to enhance the analysis and prediction of vehicle responses for motion planning and control systems.
We introduce the Road Surface Reconstruction dataset, a real-world, high-resolution, and high-precision dataset collected with a specialized platform in diverse driving conditions.
It covers common road types containing approximately 16,000 pairs of stereo images, original point clouds, and ground-truth depth/disparity maps.
arXiv Detail & Related papers (2023-10-03T17:59:32Z) - Learning Terrain-Aware Kinodynamic Model for Autonomous Off-Road Rally
Driving With Model Predictive Path Integral Control [4.23755398158039]
We propose a method for learning terrain-aware kinodynamic model conditioned on both proprioceptive and exteroceptive information.
The proposed model generates reliable predictions of 6-degree-of-freedom motion and can even estimate contact interactions.
We demonstrate the effectiveness of our approach through experiments on a simulated off-road track, showing that our proposed model-controller pair outperforms the baseline.
arXiv Detail & Related papers (2023-05-01T06:09:49Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments.
We propose ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments.
ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets.
arXiv Detail & Related papers (2023-04-06T13:07:17Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
Out-of-training-distribution (OOD) scenarios are a common challenge of learning agents at deployment.
We propose an uncertainty-aware planning method, called emphrobust imitative planning (RIP)
Our method can detect and recover from some distribution shifts, reducing the overconfident and catastrophic extrapolations in OOD scenes.
We introduce an autonomous car novel-scene benchmark, textttCARNOVEL, to evaluate the robustness of driving agents to a suite of tasks with distribution shifts.
arXiv Detail & Related papers (2020-06-26T11:07:32Z) - Online Mapping and Motion Planning under Uncertainty for Safe Navigation
in Unknown Environments [3.2296078260106174]
This manuscript proposes an uncertainty-based framework for mapping and planning feasible motions online with probabilistic safety-guarantees.
The proposed approach deals with the motion, probabilistic safety, and online computation constraints by: (i) mapping the surroundings to build an uncertainty-aware representation of the environment, and (ii) iteratively (re)planning to goal that are kinodynamically feasible and probabilistically safe through a multi-layered sampling-based planner in the belief space.
arXiv Detail & Related papers (2020-04-26T08:53:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.