Evaluating Robustness of Reinforcement Learning Algorithms for Autonomous Shipping
- URL: http://arxiv.org/abs/2411.04915v1
- Date: Thu, 07 Nov 2024 17:55:07 GMT
- Title: Evaluating Robustness of Reinforcement Learning Algorithms for Autonomous Shipping
- Authors: Bavo Lesy, Ali Anwar, Siegfried Mercelis,
- Abstract summary: This paper examines the robustness of benchmark deep reinforcement learning (RL) algorithms, implemented for inland waterway transport (IWT) within an autonomous shipping simulator.
We show that a model-free approach can achieve an adequate policy in the simulator, successfully navigating port environments never encountered during training.
- Score: 2.9109581496560044
- License:
- Abstract: Recently, there has been growing interest in autonomous shipping due to its potential to improve maritime efficiency and safety. The use of advanced technologies, such as artificial intelligence, can address the current navigational and operational challenges in autonomous shipping. In particular, inland waterway transport (IWT) presents a unique set of challenges, such as crowded waterways and variable environmental conditions. In such dynamic settings, the reliability and robustness of autonomous shipping solutions are critical factors for ensuring safe operations. This paper examines the robustness of benchmark deep reinforcement learning (RL) algorithms, implemented for IWT within an autonomous shipping simulator, and their ability to generate effective motion planning policies. We demonstrate that a model-free approach can achieve an adequate policy in the simulator, successfully navigating port environments never encountered during training. We focus particularly on Soft-Actor Critic (SAC), which we show to be inherently more robust to environmental disturbances compared to MuZero, a state-of-the-art model-based RL algorithm. In this paper, we take a significant step towards developing robust, applied RL frameworks that can be generalized to various vessel types and navigate complex port- and inland environments and scenarios.
Related papers
- Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - EnCoMP: Enhanced Covert Maneuver Planning with Adaptive Threat-Aware Visibility Estimation using Offline Reinforcement Learning [0.6597195879147555]
We propose EnCoMP, an enhanced navigation framework to enable robots to navigate covertly in diverse outdoor settings.
We generate high-fidelity multi-map representations, including cover maps, potential threat maps, height maps, and goal maps from LiDAR point clouds.
We demonstrate our method's capabilities on a physical Jackal robot, showing extensive experiments across diverse terrains.
arXiv Detail & Related papers (2024-03-29T07:03:10Z) - Residual Physics Learning and System Identification for Sim-to-real
Transfer of Policies on Buoyancy Assisted Legged Robots [14.760426243769308]
In this work, we demonstrate robust sim-to-real transfer of control policies on the BALLU robots via system identification.
Rather than relying on standard supervised learning formulations, we utilize deep reinforcement learning to train an external force policy.
We analyze the improved simulation fidelity by comparing the simulation trajectories against the real-world ones.
arXiv Detail & Related papers (2023-03-16T18:49:05Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
We propose a benchmark environment for Safe Reinforcement Learning focusing on aquatic navigation.
We consider a value-based and policy-gradient Deep Reinforcement Learning (DRL)
We also propose a verification strategy that checks the behavior of the trained models over a set of desired properties.
arXiv Detail & Related papers (2021-12-16T16:53:56Z) - Risk-based implementation of COLREGs for autonomous surface vehicles
using deep reinforcement learning [1.304892050913381]
Deep reinforcement learning (DRL) has shown great potential for a wide range of applications.
In this work, a subset of the International Regulations for Preventing Collisions at Sea (COLREGs) is incorporated into a DRL-based path following and obstacle avoidance system.
The resulting autonomous agent dynamically interpolates between path following and COLREG-compliant collision avoidance in the training scenario, isolated encounter situations, and AIS-based simulations of real-world scenarios.
arXiv Detail & Related papers (2021-11-30T21:32:59Z) - STEP: Stochastic Traversability Evaluation and Planning for Safe
Off-road Navigation [9.423950528323893]
We propose an approach for assessing traversability and planning a safe, feasible, and fast trajectory in real-time.
Our approach relies on: 1) rapid uncertainty-aware mapping and traversability evaluation, 2) tail risk assessment using the Conditional Value-at-Risk (CVaR), and 3) efficient risk and constraint-aware kinodynamic motion planning.
We analyze our method in simulation and validate its efficacy on wheeled and legged robotic platforms exploring extreme terrains including an underground lava tube.
arXiv Detail & Related papers (2021-03-04T04:24:19Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
Reinforcement learning (RL) in real-world safety-critical target settings like urban driving is hazardous.
We propose a "safety-critical adaptation" task setting: an agent first trains in non-safety-critical "source" environments.
We propose a solution approach, CARL, that builds on the intuition that prior experience in diverse environments equips an agent to estimate risk.
arXiv Detail & Related papers (2020-08-15T01:40:59Z) - Robust Reinforcement Learning with Wasserstein Constraint [49.86490922809473]
We show the existence of optimal robust policies, provide a sensitivity analysis for the perturbations, and then design a novel robust learning algorithm.
The effectiveness of the proposed algorithm is verified in the Cart-Pole environment.
arXiv Detail & Related papers (2020-06-01T13:48:59Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.