Point Cloud based Hierarchical Deep Odometry Estimation
- URL: http://arxiv.org/abs/2103.03394v1
- Date: Fri, 5 Mar 2021 00:17:58 GMT
- Title: Point Cloud based Hierarchical Deep Odometry Estimation
- Authors: Farzan Erlik Nowruzi, Dhanvin Kolhatkar, Prince Kapoor, Robert
Laganiere
- Abstract summary: We propose a deep model that learns to estimate odometry in driving scenarios using point cloud data.
The proposed model consumes raw point clouds in order to extract frame-to-frame odometry estimation.
- Score: 3.058685580689605
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Processing point clouds using deep neural networks is still a challenging
task. Most existing models focus on object detection and registration with deep
neural networks using point clouds. In this paper, we propose a deep model that
learns to estimate odometry in driving scenarios using point cloud data. The
proposed model consumes raw point clouds in order to extract frame-to-frame
odometry estimation through a hierarchical model architecture. Also, a local
bundle adjustment variation of this model using LSTM layers is implemented.
These two approaches are comprehensively evaluated and are compared against the
state-of-the-art.
Related papers
- ModelNet-O: A Large-Scale Synthetic Dataset for Occlusion-Aware Point
Cloud Classification [28.05358017259757]
We propose ModelNet-O, a large-scale synthetic dataset of 123,041 samples.
ModelNet-O emulates real-world point clouds with self-occlusion caused by scanning from monocular cameras.
We propose a robust point cloud processing method called PointMLS.
arXiv Detail & Related papers (2024-01-16T08:54:21Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - DSMNet: Deep High-precision 3D Surface Modeling from Sparse Point Cloud
Frames [12.531880335603145]
Existing point cloud modeling datasets express the modeling precision by pose or trajectory precision rather than the point cloud modeling effect itself.
We propose a novel learning-based joint framework, DSMNet, for high-precision 3D surface modeling from sparse point cloud frames.
arXiv Detail & Related papers (2023-04-09T09:23:06Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNet is able to reconstruct and generate high-fidelity and even 3D point clouds using a mapping network.
Our framework achieves comparable state-of-the-art performance on various metrics in the point cloud reconstruction and generation tasks.
arXiv Detail & Related papers (2023-03-28T08:21:44Z) - Parametric Surface Constrained Upsampler Network for Point Cloud [33.033469444588086]
We introduce a novel surface regularizer into the upsampler network by forcing the neural network to learn the underlying parametric surface represented by bicubic functions and rotation functions.
These designs are integrated into two different networks for two tasks that take advantages of upsampling layers.
The state-of-the-art experimental results on both tasks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2023-03-14T21:12:54Z) - Controllable Mesh Generation Through Sparse Latent Point Diffusion
Models [105.83595545314334]
We design a novel sparse latent point diffusion model for mesh generation.
Our key insight is to regard point clouds as an intermediate representation of meshes, and model the distribution of point clouds instead.
Our proposed sparse latent point diffusion model achieves superior performance in terms of generation quality and controllability.
arXiv Detail & Related papers (2023-03-14T14:25:29Z) - Differentiable Convolution Search for Point Cloud Processing [114.66038862207118]
We propose a novel differential convolution search paradigm on point clouds.
It can work in a purely data-driven manner and thus is capable of auto-creating a group of suitable convolutions for geometric shape modeling.
We also propose a joint optimization framework for simultaneous search of internal convolution and external architecture, and introduce epsilon-greedy algorithm to alleviate the effect of discretization error.
arXiv Detail & Related papers (2021-08-29T14:42:03Z) - Refinement of Predicted Missing Parts Enhance Point Cloud Completion [62.997667081978825]
Point cloud completion is the task of predicting complete geometry from partial observations using a point set representation for a 3D shape.
Previous approaches propose neural networks to directly estimate the whole point cloud through encoder-decoder models fed by the incomplete point set.
This paper proposes an end-to-end neural network architecture that focuses on computing the missing geometry and merging the known input and the predicted point cloud.
arXiv Detail & Related papers (2020-10-08T22:01:23Z) - DeepCLR: Correspondence-Less Architecture for Deep End-to-End Point
Cloud Registration [12.471564670462344]
This work addresses the problem of point cloud registration using deep neural networks.
We propose an approach to predict the alignment between two point clouds with overlapping data content, but displaced origins.
Our approach achieves state-of-the-art accuracy and the lowest run-time of the compared methods.
arXiv Detail & Related papers (2020-07-22T08:20:57Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNs are powerful but it would be computationally costly to directly apply convolutions on point data after voxelizing the entire point clouds to a dense regular 3D grid.
We propose a novel and principled Local Grid Rendering (LGR) operation to render the small neighborhood of a subset of input points into a low-resolution 3D grid independently.
We validate LGR-Net for 3D object detection on the challenging ScanNet and SUN RGB-D datasets.
arXiv Detail & Related papers (2020-07-04T13:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.