論文の概要: Deep Generative Pattern-Set Mixture Models for Nonignorable Missingness
- arxiv url: http://arxiv.org/abs/2103.03532v1
- Date: Fri, 5 Mar 2021 08:21:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-08 15:00:32.720338
- Title: Deep Generative Pattern-Set Mixture Models for Nonignorable Missingness
- Title(参考訳): 非無視欠陥に対するディープジェネレーティブパターンセット混合モデル
- Authors: Sahra Ghalebikesabi, Rob Cornish, Luke J. Kelly and Chris Holmes
- Abstract要約: 無視できないデータと無視できないデータの両方をモデル化する可変オートエンコーダアーキテクチャを提案する。
モデルでは,観測されたデータと欠落マスクに基づいて,欠落したデータを欠落パターンにクラスタ化することを明示的に学習する。
当社のセットアップでは,無知かつ無知な欠如の特性をトレードオフすることで,両タイプのデータに適用することが可能である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a variational autoencoder architecture to model both ignorable and
nonignorable missing data using pattern-set mixtures as proposed by Little
(1993). Our model explicitly learns to cluster the missing data into
missingness pattern sets based on the observed data and missingness masks.
Underpinning our approach is the assumption that the data distribution under
missingness is probabilistically semi-supervised by samples from the observed
data distribution. Our setup trades off the characteristics of ignorable and
nonignorable missingness and can thus be applied to data of both types. We
evaluate our method on a wide range of data sets with different types of
missingness and achieve state-of-the-art imputation performance. Our model
outperforms many common imputation algorithms, especially when the amount of
missing data is high and the missingness mechanism is nonignorable.
- Abstract(参考訳): パターンセット混合を用いた非無視データと非無視データの両方をモデル化するための変分オートエンコーダアーキテクチャを提案する(1993年)。
モデルでは,観測されたデータと欠落マスクに基づいて,欠落したデータを欠落パターンにクラスタ化することを明示的に学習する。
提案手法の根底にあるのは, 観測されたデータ分布のサンプルによって, 確率的にデータ分布が半教師されるという仮定である。
当社のセットアップでは,無知かつ無知な欠如の特性をトレードオフすることで,両タイプのデータに適用することが可能である。
提案手法は,異なるタイプの欠落を有する幅広いデータセットを用いて評価し,最先端の計算性能を実現する。
我々のモデルは、特に欠落するデータの量が高く、欠落するメカニズムが無視できない場合に、多くの一般的な計算アルゴリズムより優れている。
関連論文リスト
- Exploiting the Data Gap: Utilizing Non-ignorable Missingness to Manipulate Model Learning [13.797822374912773]
敵対的ミススティングネス(AM)攻撃は、悪意ある無知の欠陥メカニズムによって動機づけられる。
本研究は,AM攻撃の文脈における連帯学習に焦点を当てる。
両レベルの最適化として,対向的欠落メカニズムの学習を定式化する。
論文 参考訳(メタデータ) (2024-09-06T17:10:28Z) - Sufficient Identification Conditions and Semiparametric Estimation under
Missing Not at Random Mechanisms [4.211128681972148]
統計的に有効な分析を行うことは、MNARデータの存在において困難である。
従来のMNARモデルを2つの方法で一般化したMNARモデルを考える。
そこで本稿では,確率比をパラメータとして,そのようなモデルで符号化された独立性制約をテストする手法を提案する。
論文 参考訳(メタデータ) (2023-06-10T13:46:16Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
不完全な観測データから因果発見を行うため,MissDAGと呼ばれる一般的な手法を開発した。
MissDAGは、期待-最大化の枠組みの下で観測の可視部分の期待される可能性を最大化する。
各種因果探索アルゴリズムを組み込んだMissDAGの柔軟性について,広範囲なシミュレーションと実データ実験により検証した。
論文 参考訳(メタデータ) (2022-05-27T09:59:46Z) - Model-based Clustering with Missing Not At Random Data [0.8777702580252754]
我々は,MNARデータを含む,非常に一般的なタイプの欠落データを扱うために設計されたモデルベースのクラスタリングアルゴリズムを提案する。
いくつかのMNARモデルについて議論し、不足の原因は、欠落変数自体の値とクラスメンバーシップの両方に依存する。
MNARzと呼ばれる特定のMNARモデルに注目する。
論文 参考訳(メタデータ) (2021-12-20T09:52:12Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
欠落データに対する因果認識型計算アルゴリズム(MIRACLE)を提案する。
MIRACLEは、欠落発生機構を同時にモデル化することにより、ベースラインの計算を反復的に洗練する。
我々は、MIRACLEが一貫してイミューテーションを改善することができることを示すために、合成および様々な公開データセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2021-11-04T22:38:18Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
スペクトルベースのサブスペース学習は、多くの機械学習パイプラインにおいて、一般的なデータ前処理ステップである。
ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確さやアーティファクトを考慮していない。
論文 参考訳(メタデータ) (2020-09-01T15:08:23Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
本稿では,データセットの組み合わせから頑健で一般化可能な予測モデルを学習する際の問題点について検討する。
堅牢なモデルを学ぶことの課題の一部は、保存されていない共同設立者の影響にある。
異なるモダリティの医療データに対するアプローチの実証的性能を実証する。
論文 参考訳(メタデータ) (2020-07-21T08:18:06Z) - not-MIWAE: Deep Generative Modelling with Missing not at Random Data [21.977065542645082]
本稿では、欠落したプロセスが欠落したデータに依存している場合に、DLVM(Deep Latent variable Model)を構築し、適合させるアプローチを提案する。
具体的には、深層ニューラルネットワークにより、データから得られる欠損パターンの条件分布を柔軟にモデル化することができる。
欠落したプロセスを明示的にモデル化する様々なデータセットと欠落パターンが有用であることを示す。
論文 参考訳(メタデータ) (2020-06-23T10:06:21Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Multiple Imputation with Denoising Autoencoder using Metamorphic Truth
and Imputation Feedback [0.0]
データの内部表現を学習するために,Denoising Autoencoder を用いた多重命令モデルを提案する。
我々は、属性の統計的整合性を維持するために、変成真理と帰納フィードバックの新たなメカニズムを用いる。
提案手法は,多くの標準的なテストケースにおいて,様々な欠落メカニズムや欠落したデータのパターンに対するインパルスの効果を検証し,他の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-02-19T18:26:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。