Enumerating all bilocal Clifford distillation protocols through symmetry
reduction
- URL: http://arxiv.org/abs/2103.03669v5
- Date: Tue, 17 May 2022 11:14:07 GMT
- Title: Enumerating all bilocal Clifford distillation protocols through symmetry
reduction
- Authors: Sarah Jansen, Kenneth Goodenough, S\'ebastian de Bone, Dion Gijswijt,
David Elkouss
- Abstract summary: Entanglement distillation is an essential building block in quantum communication protocols.
We study the class of near-term implementable distillation protocols that use bilocal Clifford operations.
We present circuits that achieve the highest fidelity with perfect operations and no decoherence.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entanglement distillation is an essential building block in quantum
communication protocols. Here, we study the class of near-term implementable
distillation protocols that use bilocal Clifford operations followed by a
single round of communication. We introduce tools to enumerate and optimise
over all protocols for up to $n=5$ (not necessarily equal) Bell-diagonal states
using a commodity desktop computer. Furthermore, by exploiting the symmetries
of the input states, we find all protocols for up to $n=8$ copies of a Werner
state. For the latter case, we present circuits that achieve the highest
fidelity with perfect operations and no decoherence. These circuits have modest
depth and number of two-qubit gates. Our results are based on a correspondence
between distillation protocols and double cosets of the symplectic group, and
improve on previously known protocols.
Related papers
- Roadmap to fault tolerant quantum computation using topological qubit arrays [37.024540100400536]
We describe a device roadmap towards a fault-tolerant quantum computing architecture based on noise-resilient, topologically protected Majorana-based qubits.
Our roadmap encompasses four generations of devices: a single-qubit device that enables a measurement-based qubit benchmarking protocol; a two-qubit device that uses measurement-based braiding to perform single-qubit Clifford operations; and an eight-qubit device that can be used to show an improvement of a two-qubit operation when performed on logical qubits.
arXiv Detail & Related papers (2025-02-17T19:00:10Z) - Constant Overhead Entanglement Distillation via Scrambling [0.6249768559720122]
High-fidelity quantum entanglement enables key quantum networking capabilities such as secure communication and distributed quantum computing.
We introduce protocols that use quantum scrambling - the spreading of quantum information under chaotic dynamics.
We show this protocol remains effective even with noisy quantum gates, making it suitable for near-term devices.
arXiv Detail & Related papers (2025-02-13T16:46:15Z) - Universal quantum computation via scalable measurement-free error correction [45.29832252085144]
We show that universal quantum computation can be made fault-tolerant in a scenario where the error-correction is implemented without mid-circuit measurements.
We introduce a measurement-free deformation protocol of the Bacon-Shor code to realize a logical $mathitCCZ$ gate.
In particular, our findings support that below-breakeven logical performance is achievable with a circuit-level error rate below $10-3$.
arXiv Detail & Related papers (2024-12-19T18:55:44Z) - A distributed and parallel $(k, n)$ QSS scheme with verification capability [0.0]
This article introduces a novel Quantum Secret Sharing scheme with $( k, n )$ threshold and endowed with verification capability.
The primary novelty of the new protocol lies in its ability to operate completely parallelly in a fully distributed setup.
arXiv Detail & Related papers (2024-10-24T11:12:38Z) - A Novel Stabilizer-based Entanglement Distillation Protocol for Qudits [0.016385815610837167]
Entanglement distillation is pivotal for robust quantum information processing in error-prone environments.
A construction based on stabilizer codes offers an effective method for designing such protocols.
We present a novel two-copy distillation protocol that maximizes the fidelity increase per iteration for Bell-diagonal states in any prime dimension.
arXiv Detail & Related papers (2024-08-05T11:14:28Z) - Statistical evaluation and optimization of entanglement purification protocols [0.0]
We demonstrate that pioneering protocols are unable to improve the estimated initial average concurrence of almost uniformly sampled density matrices.
We also develop a more efficient protocol and investigate it numerically together with a recent proposal based on an entangling rank-$2$ projector.
arXiv Detail & Related papers (2024-02-19T16:58:03Z) - Quantum Two-Way Protocol Beyond Superdense Coding: Joint Transfer of Data and Entanglement [33.2699333323263]
We introduce a generalization of one-way superdense coding to two-way communication protocols for transmitting classical bits by using entangled quantum pairs.
The proposed protocol jointly addresses the provision of entangled pairs and superdense coding, introducing an integrated approach for managing entanglement within the communication protocol.
We present the results of implementing the protocol in a computer simulation based on the NetSquid framework.
arXiv Detail & Related papers (2023-09-06T08:48:07Z) - Near-term $n$ to $k$ distillation protocols using graph codes [0.0]
Noisy hardware forms one of the main hurdles to the realization of a near-term quantum internet.
We consider here an experimentally relevant class of distillation protocols, which distill $n$ to $k$ end-to-end entangled pairs.
We leverage this correspondence to find provably optimal distillation protocols in this class for several tasks important for the quantum internet.
arXiv Detail & Related papers (2023-03-20T21:46:17Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Entanglement purification by counting and locating errors with
entangling measurements [62.997667081978825]
We consider entanglement purification protocols for multiple copies of qubit states.
We use high-dimensional auxiliary entangled systems to learn about number and positions of errors in the noisy ensemble.
arXiv Detail & Related papers (2020-11-13T19:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.