Enumerating all bilocal Clifford distillation protocols through symmetry
reduction
- URL: http://arxiv.org/abs/2103.03669v5
- Date: Tue, 17 May 2022 11:14:07 GMT
- Title: Enumerating all bilocal Clifford distillation protocols through symmetry
reduction
- Authors: Sarah Jansen, Kenneth Goodenough, S\'ebastian de Bone, Dion Gijswijt,
David Elkouss
- Abstract summary: Entanglement distillation is an essential building block in quantum communication protocols.
We study the class of near-term implementable distillation protocols that use bilocal Clifford operations.
We present circuits that achieve the highest fidelity with perfect operations and no decoherence.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entanglement distillation is an essential building block in quantum
communication protocols. Here, we study the class of near-term implementable
distillation protocols that use bilocal Clifford operations followed by a
single round of communication. We introduce tools to enumerate and optimise
over all protocols for up to $n=5$ (not necessarily equal) Bell-diagonal states
using a commodity desktop computer. Furthermore, by exploiting the symmetries
of the input states, we find all protocols for up to $n=8$ copies of a Werner
state. For the latter case, we present circuits that achieve the highest
fidelity with perfect operations and no decoherence. These circuits have modest
depth and number of two-qubit gates. Our results are based on a correspondence
between distillation protocols and double cosets of the symplectic group, and
improve on previously known protocols.
Related papers
- A distributed and parallel $(k, n)$ QSS scheme with verification capability [0.0]
This article introduces a novel Quantum Secret Sharing scheme with $( k, n )$ threshold and endowed with verification capability.
The primary novelty of the new protocol lies in its ability to operate completely parallelly in a fully distributed setup.
arXiv Detail & Related papers (2024-10-24T11:12:38Z) - Harnessing Nth Root Gates for Energy Storage [30.733286944793527]
We explore the use of fractional control-not gates in quantum thermodynamics.
Nth-root gate allows for a paced application of two-qubit operations.
We apply it in quantum thermodynamic protocols for charging a quantum battery.
arXiv Detail & Related papers (2024-09-16T14:57:55Z) - A Novel Stabilizer-based Entanglement Distillation Protocol for Qudits [0.016385815610837167]
Entanglement distillation is pivotal for robust quantum information processing in error-prone environments.
A construction based on stabilizer codes offers an effective method for designing such protocols.
We present a novel two-copy distillation protocol that maximizes the fidelity increase per iteration for Bell-diagonal states in any prime dimension.
arXiv Detail & Related papers (2024-08-05T11:14:28Z) - An optimal tradeoff between entanglement and copy complexity for state
tomography [24.737530909081915]
We study tomography in the natural setting where one can make measurements of $t$ copies at a time.
This is the first smooth entanglement-copy protocol known for any quantum learning task.
A key insight is to use SchurilonWeyl sampling not to estimate the spectrum of $rho$, but to estimate the deviation of $rho$ from the maximally mixed state.
arXiv Detail & Related papers (2024-02-26T07:18:57Z) - Statistical evaluation and optimization of entanglement purification protocols [0.0]
We demonstrate that pioneering protocols are unable to improve the estimated initial average concurrence of almost uniformly sampled density matrices.
We also develop a more efficient protocol and investigate it numerically together with a recent proposal based on an entangling rank-$2$ projector.
arXiv Detail & Related papers (2024-02-19T16:58:03Z) - Quantum Two-Way Communication Protocol Beyond Superdense Coding [36.25599253958745]
We introduce a generalization of one-way superdense coding to two-way communication protocols for transmitting classical bits by using entangled quantum pairs.
The proposed protocol gives a 50% increase in both data rate and energy efficiency compared to the classical protocol.
arXiv Detail & Related papers (2023-09-06T08:48:07Z) - Non-Local Multi-Qubit Quantum Gates via a Driven Cavity [0.0]
We present two protocols for implementing deterministic non-local multi-qubit quantum gates on qubits coupled to a common cavity mode.
The protocols rely only on a classical drive of the cavity modes, while no external drive of the qubits is required.
We provide estimates of gate fidelities and durations for atomic and molecular qubits coupled to optical or microwave cavities, and suggest applications for quantum error correction.
arXiv Detail & Related papers (2023-03-23T09:30:42Z) - Near-term $n$ to $k$ distillation protocols using graph codes [0.0]
Noisy hardware forms one of the main hurdles to the realization of a near-term quantum internet.
We consider here an experimentally relevant class of distillation protocols, which distill $n$ to $k$ end-to-end entangled pairs.
We leverage this correspondence to find provably optimal distillation protocols in this class for several tasks important for the quantum internet.
arXiv Detail & Related papers (2023-03-20T21:46:17Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Entanglement purification by counting and locating errors with
entangling measurements [62.997667081978825]
We consider entanglement purification protocols for multiple copies of qubit states.
We use high-dimensional auxiliary entangled systems to learn about number and positions of errors in the noisy ensemble.
arXiv Detail & Related papers (2020-11-13T19:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.