A Novel Stabilizer-based Entanglement Distillation Protocol for Qudits
- URL: http://arxiv.org/abs/2408.02383v1
- Date: Mon, 5 Aug 2024 11:14:28 GMT
- Title: A Novel Stabilizer-based Entanglement Distillation Protocol for Qudits
- Authors: Christopher Popp, Tobias C. Sutter, Beatrix C. Hiesmayr,
- Abstract summary: Entanglement distillation is pivotal for robust quantum information processing in error-prone environments.
A construction based on stabilizer codes offers an effective method for designing such protocols.
We present a novel two-copy distillation protocol that maximizes the fidelity increase per iteration for Bell-diagonal states in any prime dimension.
- Score: 0.016385815610837167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement distillation, the process of converting weakly entangled states into maximally entangled ones using Local Operations and Classical Communication (LOCC), is pivotal for robust entanglement-assisted quantum information processing in error-prone environments. A construction based on stabilizer codes offers an effective method for designing such protocols. By analytically investigating the effective action of stabilizer protocols for codes in arbitrary dimensions, we establish a standard form for the output states of recurrent stabilizer-based distillation. This links the properties of input states, stabilizers, and encodings to the properties of the protocol. Based on those insights, we present a novel two-copy distillation protocol, applicable to all bipartite states, that maximizes the fidelity increase per iteration for Bell-diagonal states in any prime dimension. The power of this framework and the protocol is demonstrated through numerical investigations, which provide evidence of its superior performance in terms of efficiency and distillability of low-fidelity states compared to other well-established recurrence protocols. By elucidating the interplay between states, errors, and protocols, our contribution advances the systematic development of highly effective distillation protocols across arbitrary dimensions, enhancing our understanding of distillability.
Related papers
- Protocols and Trade-Offs of Quantum State Purification [4.732131350249]
We introduce a general state purification framework designed to achieve the highest fidelity with a specified probability.
For i.i.d. quantum states under depolarizing noise, our framework can replicate the purification protocol proposed by Barenco and al.
We prove the protocols' optimality for two copies of noisy states with any dimension and confirm its optimality for higher numbers of copies and dimensions.
arXiv Detail & Related papers (2024-04-01T14:34:45Z) - Statistical evaluation and optimization of entanglement purification protocols [0.0]
We demonstrate that pioneering protocols are unable to improve the estimated initial average concurrence of almost uniformly sampled density matrices.
We also develop a more efficient protocol and investigate it numerically together with a recent proposal based on an entangling rank-$2$ projector.
arXiv Detail & Related papers (2024-02-19T16:58:03Z) - Performance of entanglement purification including maximally entangled mixed states [0.0]
Entanglement between distant quantum systems is a critical resource for implementing quantum communication.
We propose an entanglement purification protocol based on two entangling two-qubit operations.
Two variants of the core protocol are introduced and shown to be more practical in certain scenarios.
arXiv Detail & Related papers (2024-02-06T18:34:34Z) - Fidelity estimation of quantum states on a silicon photonic chip [0.03078691410268859]
We adapt a previously reported optimal state verification protocol (Phys. Rev. Lett. 120, 170502) for fidelity estimation of two-qubit states.
We demonstrate the protocol experimentally using a fully-programmable silicon photonic two-qubit chip.
arXiv Detail & Related papers (2023-06-01T18:16:33Z) - Entanglement Purification of Hypergraph States [0.0]
Entanglement purification describes a primitive in quantum information processing, where several copies of noisy quantum states are distilled into few copies of nearly-pure states of high quality.
We present optimized protocols for the purification of hypergraph states, which form a family of multi-qubit states that are relevant from several perspectives.
arXiv Detail & Related papers (2023-01-26T19:00:01Z) - Byzantine-Robust Federated Learning with Optimal Statistical Rates and
Privacy Guarantees [123.0401978870009]
We propose Byzantine-robust federated learning protocols with nearly optimal statistical rates.
We benchmark against competing protocols and show the empirical superiority of the proposed protocols.
Our protocols with bucketing can be naturally combined with privacy-guaranteeing procedures to introduce security against a semi-honest server.
arXiv Detail & Related papers (2022-05-24T04:03:07Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Reinforcement learning-enhanced protocols for coherent
population-transfer in three-level quantum systems [50.591267188664666]
We deploy a combination of reinforcement learning-based approaches and more traditional optimization techniques to identify optimal protocols for population transfer.
Our approach is able to explore the space of possible control protocols to reveal the existence of efficient protocols.
The new protocols that we identify are robust against both energy losses and dephasing.
arXiv Detail & Related papers (2021-09-02T14:17:30Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Entanglement purification by counting and locating errors with
entangling measurements [62.997667081978825]
We consider entanglement purification protocols for multiple copies of qubit states.
We use high-dimensional auxiliary entangled systems to learn about number and positions of errors in the noisy ensemble.
arXiv Detail & Related papers (2020-11-13T19:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.