Signal-level Fusion for Indexing and Retrieval of Facial Biometric Data
- URL: http://arxiv.org/abs/2103.03692v1
- Date: Fri, 5 Mar 2021 14:06:54 GMT
- Title: Signal-level Fusion for Indexing and Retrieval of Facial Biometric Data
- Authors: Pawel Drozdowski, Fabian Stockhardt, Christian Rathgeb, Christoph
Busch
- Abstract summary: The proposed method is extensively evaluated on publicly available databases using open-source and commercial off-the-shelf recognition systems.
The results show that using the proposed method, the computational workload can be reduced down to around 30%.
- Score: 17.297562114613505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing scope, scale, and number of biometric deployments around the
world emphasise the need for research into technologies facilitating efficient
and reliable biometric identification queries. This work presents a method of
indexing biometric databases, which relies on signal-level fusion of facial
images (morphing) to create a multi-stage data-structure and retrieval
protocol. By successively pre-filtering the list of potential candidate
identities, the proposed method makes it possible to reduce the necessary
number of biometric template comparisons to complete a biometric identification
transaction. The proposed method is extensively evaluated on publicly available
databases using open-source and commercial off-the-shelf recognition systems.
The results show that using the proposed method, the computational workload can
be reduced down to around 30%, while the biometric performance of a baseline
exhaustive search-based retrieval is fully maintained, both in closed-set and
open-set identification scenarios.
Related papers
- Model-Agnostic Utility-Preserving Biometric Information Anonymization [9.413512346732768]
The recent rapid advancements in both sensing and machine learning technologies have given rise to the universal collection and utilization of people's biometrics.
The use of biometrics has raised serious privacy concerns due to their intrinsic sensitive nature and the accompanying high risk of leaking sensitive information.
We propose a novel modality-agnostic data transformation framework that is capable of anonymizing biometric data by suppressing its sensitive attributes and retaining features relevant to downstream machine learning-based analyses.
arXiv Detail & Related papers (2024-05-23T21:21:40Z) - Privacy-preserving Multi-biometric Indexing based on Frequent Binary
Patterns [7.092869001331781]
We propose an efficient privacy-preserving multi-biometric identification system that retrieves protected deep cancelable templates.
A multi-biometric binning scheme is designed to exploit the low intra-class variation properties contained in the frequent binary patterns extracted from different types of biometric characteristics.
arXiv Detail & Related papers (2023-10-04T18:18:24Z) - Multi-Channel Time-Series Person and Soft-Biometric Identification [65.83256210066787]
This work investigates person and soft-biometrics identification from recordings of humans performing different activities using deep architectures.
We evaluate the method on four datasets of multi-channel time-series human activity recognition (HAR)
Soft-biometric based attribute representation shows promising results and emphasis the necessity of larger datasets.
arXiv Detail & Related papers (2023-04-04T07:24:51Z) - Advancing 3D finger knuckle recognition via deep feature learning [51.871256510747465]
Contactless 3D finger knuckle patterns have emerged as an effective biometric identifier due to its discriminativeness, visibility from a distance, and convenience.
Recent research has developed a deep feature collaboration network which simultaneously incorporates intermediate features from deep neural networks with multiple scales.
This paper advances this approach by investigating the possibility of learning a discriminative feature vector with the least possible dimension for representing 3D finger knuckle images.
arXiv Detail & Related papers (2023-01-07T20:55:16Z) - Fingerprint Image-Quality Estimation and its Application to
Multialgorithm Verification [56.128200319868526]
Signal-quality awareness has been found to increase recognition rates and to support decisions in multisensor environments significantly.
Here, we study the orientation tensor of fingerprint images to quantify signal impairments, such as noise, lack of structure, blur, with the help of symmetry descriptors.
The quantitative results favor quality awareness under all aspects, boosting recognition rates and fusing differently skilled experts efficiently as well as effectively.
arXiv Detail & Related papers (2022-11-24T12:17:49Z) - Facial Soft Biometrics for Recognition in the Wild: Recent Works,
Annotation, and COTS Evaluation [63.05890836038913]
We study the role of soft biometrics to enhance person recognition systems in unconstrained scenarios.
We consider two assumptions: 1) manual estimation of soft biometrics and 2) automatic estimation from two commercial off-the-shelf systems.
Experiments are carried out fusing soft biometrics with two state-of-the-art face recognition systems based on deep learning.
arXiv Detail & Related papers (2022-10-24T11:29:57Z) - OTB-morph: One-Time Biometrics via Morphing applied to Face Templates [8.623680649444212]
This paper introduces a new scheme for cancelable biometrics aimed at protecting the templates against potential attacks.
An experimental implementation of the proposed scheme is given for face biometrics.
arXiv Detail & Related papers (2021-11-25T18:35:34Z) - Benchmarking Quality-Dependent and Cost-Sensitive Score-Level Multimodal
Biometric Fusion Algorithms [58.156733807470395]
This paper reports a benchmarking study carried out within the framework of the BioSecure DS2 (Access Control) evaluation campaign.
The campaign targeted the application of physical access control in a medium-size establishment with some 500 persons.
To the best of our knowledge, this is the first attempt to benchmark quality-based multimodal fusion algorithms.
arXiv Detail & Related papers (2021-11-17T13:39:48Z) - Feature Fusion Methods for Indexing and Retrieval of Biometric Data:
Application to Face Recognition with Privacy Protection [15.834050000008878]
The proposed method reduces the computational workload associated with a biometric identification transaction by 90%.
The method guarantees unlinkability, irreversibility, and renewability of the protected biometric data.
arXiv Detail & Related papers (2021-07-27T08:53:29Z) - Deep Hashing for Secure Multimodal Biometrics [1.7188280334580195]
We present a framework for feature-level fusion that generates a secure multimodal template from each user's face and iris biometrics.
We employ a hybrid secure architecture by combining cancelable biometrics with secure sketch techniques.
The proposed approach also provides cancelability and unlinkability of the templates along with improved privacy of the biometric data.
arXiv Detail & Related papers (2020-12-29T14:15:05Z) - Generalized Iris Presentation Attack Detection Algorithm under
Cross-Database Settings [63.90855798947425]
Presentation attacks pose major challenges to most of the biometric modalities.
We propose a generalized deep learning-based presentation attack detection network, MVANet.
It is inspired by the simplicity and success of hybrid algorithm or fusion of multiple detection networks.
arXiv Detail & Related papers (2020-10-25T22:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.