Distributed Dynamic Map Fusion via Federated Learning for Intelligent
Networked Vehicles
- URL: http://arxiv.org/abs/2103.03786v1
- Date: Fri, 5 Mar 2021 16:28:46 GMT
- Title: Distributed Dynamic Map Fusion via Federated Learning for Intelligent
Networked Vehicles
- Authors: Zijian Zhang, Shuai Wang, Yuncong Hong, Liangkai Zhou, and Qi Hao
- Abstract summary: This paper proposes a federated learning based dynamic map fusion framework to achieve high map quality.
The proposed framework is implemented in the Car Learning to Act (CARLA) simulation platform.
- Score: 9.748996198083425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The technology of dynamic map fusion among networked vehicles has been
developed to enlarge sensing ranges and improve sensing accuracies for
individual vehicles. This paper proposes a federated learning (FL) based
dynamic map fusion framework to achieve high map quality despite unknown
numbers of objects in fields of view (FoVs), various sensing and model
uncertainties, and missing data labels for online learning. The novelty of this
work is threefold: (1) developing a three-stage fusion scheme to predict the
number of objects effectively and to fuse multiple local maps with fidelity
scores; (2) developing an FL algorithm which fine-tunes feature models (i.e.,
representation learning networks for feature extraction) distributively by
aggregating model parameters; (3) developing a knowledge distillation method to
generate FL training labels when data labels are unavailable. The proposed
framework is implemented in the Car Learning to Act (CARLA) simulation
platform. Extensive experimental results are provided to verify the superior
performance and robustness of the developed map fusion and FL schemes.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - FSD-BEV: Foreground Self-Distillation for Multi-view 3D Object Detection [33.225938984092274]
We propose a Foreground Self-Distillation (FSD) scheme that effectively avoids the issue of distribution discrepancies.
We also design two Point Cloud Intensification ( PCI) strategies to compensate for the sparsity of point clouds.
We develop a Multi-Scale Foreground Enhancement (MSFE) module to extract and fuse multi-scale foreground features.
arXiv Detail & Related papers (2024-07-14T09:39:44Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - DouFu: A Double Fusion Joint Learning Method For Driving Trajectory
Representation [13.321587117066166]
We propose a novel multimodal fusion model, DouFu, for trajectory representation joint learning.
We first design movement, route, and global features generated from the trajectory data and urban functional zones.
With the global semantic feature, DouFu produces a comprehensive embedding for each trajectory.
arXiv Detail & Related papers (2022-05-05T07:43:35Z) - Dense Voxel Fusion for 3D Object Detection [10.717415797194896]
Voxel Fusion (DVF) is a sequential fusion method that generates multi-scale dense voxel feature representations.
We train directly with ground truth 2D bounding box labels, avoiding noisy, detector-specific, 2D predictions.
We show that our proposed multi-modal training strategy results in better generalization compared to training using erroneous 2D predictions.
arXiv Detail & Related papers (2022-03-02T04:51:31Z) - LATFormer: Locality-Aware Point-View Fusion Transformer for 3D Shape
Recognition [38.540048855119004]
We propose a novel Locality-Aware Point-View Fusion Transformer (LATFormer) for 3D shape retrieval and classification.
The core component of LATFormer is a module named Locality-Aware Fusion (LAF) which integrates the local features of correlated regions across the two modalities.
In our LATFormer, we utilize the LAF module to fuse the multi-scale features of the two modalities both bidirectionally and hierarchically to obtain more informative features.
arXiv Detail & Related papers (2021-09-03T03:23:27Z) - Similarity-Aware Fusion Network for 3D Semantic Segmentation [87.51314162700315]
We propose a similarity-aware fusion network (SAFNet) to adaptively fuse 2D images and 3D point clouds for 3D semantic segmentation.
We employ a late fusion strategy where we first learn the geometric and contextual similarities between the input and back-projected (from 2D pixels) point clouds.
We show that SAFNet significantly outperforms existing state-of-the-art fusion-based approaches across various data integrity.
arXiv Detail & Related papers (2021-07-04T09:28:18Z) - Multi-View Adaptive Fusion Network for 3D Object Detection [14.506796247331584]
3D object detection based on LiDAR-camera fusion is becoming an emerging research theme for autonomous driving.
We propose a single-stage multi-view fusion framework that takes LiDAR bird's-eye view, LiDAR range view and camera view images as inputs for 3D object detection.
We design an end-to-end learnable network named MVAF-Net to integrate these two components.
arXiv Detail & Related papers (2020-11-02T00:06:01Z) - PerMO: Perceiving More at Once from a Single Image for Autonomous
Driving [76.35684439949094]
We present a novel approach to detect, segment, and reconstruct complete textured 3D models of vehicles from a single image.
Our approach combines the strengths of deep learning and the elegance of traditional techniques.
We have integrated these algorithms with an autonomous driving system.
arXiv Detail & Related papers (2020-07-16T05:02:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.