Mapping and Localization Using LiDAR Fiducial Markers
- URL: http://arxiv.org/abs/2502.03510v1
- Date: Wed, 05 Feb 2025 17:33:59 GMT
- Title: Mapping and Localization Using LiDAR Fiducial Markers
- Authors: Yibo Liu,
- Abstract summary: dissertation proposes a novel framework for mapping and localization using LiDAR fiducial markers.
An Intensity Image-based LiDAR Fiducial Marker (IFM) system is introduced, using thin, letter-sized markers compatible with visual fiducial markers.
New LFM-based mapping and localization method registers unordered, low-overlap point clouds.
- Score: 0.8702432681310401
- License:
- Abstract: LiDAR sensors are essential for autonomous systems, yet LiDAR fiducial markers (LFMs) lag behind visual fiducial markers (VFMs) in adoption and utility. Bridging this gap is vital for robotics and computer vision but challenging due to the sparse, unstructured nature of 3D LiDAR data and 2D-focused fiducial marker designs. This dissertation proposes a novel framework for mapping and localization using LFMs is proposed to benefit a variety of real-world applications, including the collection of 3D assets and training data for point cloud registration, 3D map merging, Augmented Reality (AR), and many more. First, an Intensity Image-based LiDAR Fiducial Marker (IFM) system is introduced, using thin, letter-sized markers compatible with VFMs. A detection method locates 3D fiducials from intensity images, enabling LiDAR pose estimation. Second, an enhanced algorithm extends detection to 3D maps, increasing marker range and facilitating tasks like 3D map merging. This method leverages both intensity and geometry, overcoming limitations of geometry-only detection approaches. Third, a new LFM-based mapping and localization method registers unordered, low-overlap point clouds. It employs adaptive threshold detection and a two-level graph framework to solve a maximum a-posteriori (MAP) problem, optimizing point cloud and marker poses. Additionally, the Livox-3DMatch dataset is introduced, improving learning-based multiview point cloud registration methods. Extensive experiments with various LiDAR models in diverse indoor and outdoor scenes demonstrate the effectiveness and superiority of the proposed framework.
Related papers
- LargeAD: Large-Scale Cross-Sensor Data Pretraining for Autonomous Driving [52.83707400688378]
LargeAD is a versatile and scalable framework designed for large-scale 3D pretraining across diverse real-world driving datasets.
Our framework leverages VFMs to extract semantically rich superpixels from 2D images, which are aligned with LiDAR point clouds to generate high-quality contrastive samples.
Our approach delivers significant performance improvements over state-of-the-art methods in both linear probing and fine-tuning tasks for both LiDAR-based segmentation and object detection.
arXiv Detail & Related papers (2025-01-07T18:59:59Z) - Cross-Modal Visual Relocalization in Prior LiDAR Maps Utilizing Intensity Textures [17.180614289913994]
Cross-modal localization has drawn increasing attention in recent years.
We propose a cross-modal visual relocalization system in prior LiDAR maps utilizing intensity textures.
arXiv Detail & Related papers (2024-12-02T09:13:14Z) - L-PR: Exploiting LiDAR Fiducial Marker for Unordered Low Overlap Multiview Point Cloud Registration [5.2357168261831335]
This paper introduces a novel framework dubbed L-PR, designed to register unordered low overlap point clouds.
We refer to them as LiDAR fiducial markers, but they are the same as the popular AprilTag and ArUco markers.
We conduct both qualitative and quantitative experiments to demonstrate that the proposed method surpasses previous state-of-the-art methods.
arXiv Detail & Related papers (2024-06-05T14:08:13Z) - Multi-Modal Data-Efficient 3D Scene Understanding for Autonomous Driving [58.16024314532443]
We introduce LaserMix++, a framework that integrates laser beam manipulations from disparate LiDAR scans and incorporates LiDAR-camera correspondences to assist data-efficient learning.
Results demonstrate that LaserMix++ outperforms fully supervised alternatives, achieving comparable accuracy with five times fewer annotations.
This substantial advancement underscores the potential of semi-supervised approaches in reducing the reliance on extensive labeled data in LiDAR-based 3D scene understanding systems.
arXiv Detail & Related papers (2024-05-08T17:59:53Z) - VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
monocular 3D object detection holds significant importance across various applications, including autonomous driving and robotics.
In this paper, we present VFMM3D, an innovative framework that leverages the capabilities of Vision Foundation Models (VFMs) to accurately transform single-view images into LiDAR point cloud representations.
arXiv Detail & Related papers (2024-04-15T03:12:12Z) - FusionRCNN: LiDAR-Camera Fusion for Two-stage 3D Object Detection [11.962073589763676]
Existing 3D detectors significantly improve the accuracy by adopting a two-stage paradigm.
The sparsity of point clouds, especially for the points far away, makes it difficult for the LiDAR-only refinement module to accurately recognize and locate objects.
We propose a novel multi-modality two-stage approach named FusionRCNN, which effectively and efficiently fuses point clouds and camera images in the Regions of Interest(RoI)
FusionRCNN significantly improves the strong SECOND baseline by 6.14% mAP on baseline, and outperforms competing two-stage approaches.
arXiv Detail & Related papers (2022-09-22T02:07:25Z) - FFPA-Net: Efficient Feature Fusion with Projection Awareness for 3D
Object Detection [19.419030878019974]
unstructured 3D point clouds are filled in the 2D plane and 3D point cloud features are extracted faster using projection-aware convolution layers.
The corresponding indexes between different sensor signals are established in advance in the data preprocessing.
Two new plug-and-play fusion modules, LiCamFuse and BiLiCamFuse, are proposed.
arXiv Detail & Related papers (2022-09-15T16:13:19Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to simulate features and responses that follow a multi-modality (LiDAR-image) detector.
The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference.
Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors.
arXiv Detail & Related papers (2022-06-30T01:44:30Z) - Dense Voxel Fusion for 3D Object Detection [10.717415797194896]
Voxel Fusion (DVF) is a sequential fusion method that generates multi-scale dense voxel feature representations.
We train directly with ground truth 2D bounding box labels, avoiding noisy, detector-specific, 2D predictions.
We show that our proposed multi-modal training strategy results in better generalization compared to training using erroneous 2D predictions.
arXiv Detail & Related papers (2022-03-02T04:51:31Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR
Segmentation [81.02742110604161]
State-of-the-art methods for large-scale driving-scene LiDAR segmentation often project the point clouds to 2D space and then process them via 2D convolution.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pat-tern.
Our method achieves the 1st place in the leaderboard of Semantic KITTI and outperforms existing methods on nuScenes with a noticeable margin, about 4%.
arXiv Detail & Related papers (2020-11-19T18:53:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.