論文の概要: Simplicial Complex Representation Learning
- arxiv url: http://arxiv.org/abs/2103.04046v1
- Date: Sat, 6 Mar 2021 06:33:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-09 16:04:15.281174
- Title: Simplicial Complex Representation Learning
- Title(参考訳): 単純複素表現学習
- Authors: Mustafa Hajij, Ghada Zamzmi, Xuanting Cai
- Abstract要約: 単純複体は、コンピュータ支援設計、コンピュータグラフィックス、シミュレーションでよく使用される位相空間の重要なクラスを形成する。
本稿では,単純複体を普遍埋め込み空間に埋め込む,単純複素レベル表現学習の手法を提案する。
本手法は,事前学習した簡易オートエンコーダによって誘導される単純xレベル埋め込みを用いて,単純化された複合表現全体を学習する。
- 参考スコア(独自算出の注目度): 0.7734726150561088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simplicial complexes form an important class of topological spaces that are
frequently used to in many applications areas such as computer-aided design,
computer graphics, and simulation. The representation learning on graphs, which
are just 1-d simplicial complexes, has witnessed a great attention and success
in the past few years. Due to the additional complexity higher dimensional
simplicial hold, there has not been enough effort to extend representation
learning to these objects especially when it comes to learn entire-simplicial
complex representation. In this work, we propose a method for simplicial
complex-level representation learning that embeds a simplicial complex to a
universal embedding space in a way that complex-to-complex proximity is
preserved. Our method utilizes a simplex-level embedding induced by a
pre-trained simplicial autoencoder to learn an entire simplicial complex
representation. To the best of our knowledge, this work presents the first
method for learning simplicial complex-level representation.
- Abstract(参考訳): 単純複素体は、コンピュータ支援設計、コンピュータグラフィックス、シミュレーションなどの多くのアプリケーション分野で頻繁に使用される位相空間の重要なクラスを形成します。
グラフ上の表現学習は、たった1-dの単純な複合体であり、ここ数年で大きな注目と成功を目撃しています。
複雑さが増すため、より高次元の簡素なホールドがあるため、表現学習をこれらのオブジェクトに拡張するには十分な労力がなかった。
本研究では, 複素-複素近接性を保存する方法として, 単純複体を普遍的な埋め込み空間に埋め込む簡易複体表現学習法を提案する。
本手法は,事前学習した簡易オートエンコーダによって誘導される単純xレベル埋め込みを用いて,単純化された複合表現全体を学習する。
我々の知る限りでは、この研究は単純な複素レベル表現を学習する最初の方法である。
関連論文リスト
- VisualPredicator: Learning Abstract World Models with Neuro-Symbolic Predicates for Robot Planning [86.59849798539312]
本稿では,記号的・神経的知識表現の強みを組み合わせた一階抽象言語Neuro-Symbolic Predicatesを提案する。
提案手法は, サンプルの複雑さの向上, 分布外一般化の強化, 解釈可能性の向上を実現する。
論文 参考訳(メタデータ) (2024-10-30T16:11:05Z) - Understanding Visual Feature Reliance through the Lens of Complexity [14.282243225622093]
我々は$mathscrV$-informationに基づいて,特徴量の定量化のための新しい指標を提案する。
我々は、標準画像ネット学習視覚モデルから抽出した1万個の特徴の複雑さを、垂直層内の方向として表現する。
論文 参考訳(メタデータ) (2024-07-08T16:21:53Z) - Finding structure in logographic writing with library learning [55.63800121311418]
書記システムにおける構造を発見するための計算フレームワークを開発する。
我々の枠組みは中国語の表記体系における既知の言語構造を発見する。
図書館学習のアプローチが、人間の認知における構造の形成の基盤となる基本的な計算原理を明らかにするのにどのように役立つかを実証する。
論文 参考訳(メタデータ) (2024-05-11T04:23:53Z) - Simplicity in Complexity : Explaining Visual Complexity using Deep Segmentation Models [6.324765782436764]
画像のセグメントベース表現を用いた複雑性のモデル化を提案する。
この2つの特徴を6つの多様な画像集合にまたがる単純な線形モデルにより,複雑性がよく説明できることがわかった。
論文 参考訳(メタデータ) (2024-03-05T17:21:31Z) - SC-MAD: Mixtures of Higher-order Networks for Data Augmentation [36.33265644447091]
単純複体は、グラフニューラルネットワーク(GNN)の単純複体モデルへの一般化にインスピレーションを与えた。
本稿では, 線形および非線形混合機構による単純錯体のデータ増大について述べる。
理論的には、合成単純錯体は、同型密度に関して、既存のデータ間で相互に相互作用することを示した。
論文 参考訳(メタデータ) (2023-09-14T06:25:39Z) - Spectral Convergence of Complexon Shift Operators [38.89310649097387]
本研究では,グラフトンの高次化によるトポロジカル信号処理の転送可能性について検討する。
グラフオンシフト演算子とメッセージパスニューラルネットワークにインスパイアされた我々は、限界複素数と複素数シフト演算子を構築する。
単純複素信号列が複素数信号に収束すると、対応するCSOの固有値、固有空間、フーリエ変換が極限複素数信号の信号に収束することを示す。
論文 参考訳(メタデータ) (2023-09-12T08:40:20Z) - Generalized Simplicial Attention Neural Networks [22.171364354867723]
我々はGSAN(Generalized Simplicial Attention Neural Networks)を紹介する。
GSANは、マスク付き自己意図層を用いて、単純な複合体に生きるデータを処理する。
これらのスキームは、タスク指向の方法で、連続した順序の隣り合う単純さに関連するデータを組み合わせる方法を学ぶ。
論文 参考訳(メタデータ) (2023-09-05T11:29:25Z) - On the Complexity of Representation Learning in Contextual Linear
Bandits [110.84649234726442]
表現学習は線形帯域よりも根本的に複雑であることを示す。
特に、与えられた表現の集合で学ぶことは、その集合の中で最悪の実現可能な表現で学ぶことよりも決して単純ではない。
論文 参考訳(メタデータ) (2022-12-19T13:08:58Z) - Structured information extraction from complex scientific text with
fine-tuned large language models [55.96705756327738]
そこで本研究では,共振器認識と関係抽出のための簡単なシーケンス・ツー・シーケンス手法を提案する。
このアプローチは、約500組のプロンプトで微調整された、事前訓練済みの大規模言語モデル(LLM)であるGPT-3を利用する。
このアプローチは、構造化されていないテキストから抽出された構造化知識の大規模なデータベースを得るための、シンプルで、アクセス可能で、非常に柔軟な経路を示す。
論文 参考訳(メタデータ) (2022-12-10T07:51:52Z) - On the Complexity of Bayesian Generalization [141.21610899086392]
我々は、多様かつ自然な視覚スペクトルにおいて、概念一般化を大規模に考える。
問題空間が大きくなると、2つのモードが研究され、$complexity$が多様になる。
論文 参考訳(メタデータ) (2022-11-20T17:21:37Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
単純複体は多方向順序関係を明示的にエンコードするグラフの高次元一般化と見なすことができる。
単体錯体の$k$-homological特徴によってパラメータ化された関数のグラフ畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:59:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。