論文の概要: Learning a State Representation and Navigation in Cluttered and Dynamic
Environments
- arxiv url: http://arxiv.org/abs/2103.04351v1
- Date: Sun, 7 Mar 2021 13:19:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-09 16:04:50.699208
- Title: Learning a State Representation and Navigation in Cluttered and Dynamic
Environments
- Title(参考訳): 乱雑な動的環境における状態表現とナビゲーションの学習
- Authors: David Hoeller, Lorenz Wellhausen, Farbod Farshidian, Marco Hutter
- Abstract要約: 本稿では,四足ロボットによる局所ナビゲーションを実現するための学習ベースのパイプラインを提案する。
ロボットは、環境を明示的にマッピングすることなく、奥行きカメラのフレームに基づいて、安全な場所へ移動することができる。
本システムでは,ノイズの多い奥行き画像の処理が可能であり,訓練中の動的障害物を回避でき,局所的な空間意識を付与できることを示す。
- 参考スコア(独自算出の注目度): 6.909283975004628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a learning-based pipeline to realise local
navigation with a quadrupedal robot in cluttered environments with static and
dynamic obstacles. Given high-level navigation commands, the robot is able to
safely locomote to a target location based on frames from a depth camera
without any explicit mapping of the environment. First, the sequence of images
and the current trajectory of the camera are fused to form a model of the world
using state representation learning. The output of this lightweight module is
then directly fed into a target-reaching and obstacle-avoiding policy trained
with reinforcement learning. We show that decoupling the pipeline into these
components results in a sample efficient policy learning stage that can be
fully trained in simulation in just a dozen minutes. The key part is the state
representation, which is trained to not only estimate the hidden state of the
world in an unsupervised fashion, but also helps bridging the reality gap,
enabling successful sim-to-real transfer. In our experiments with the
quadrupedal robot ANYmal in simulation and in reality, we show that our system
can handle noisy depth images, avoid dynamic obstacles unseen during training,
and is endowed with local spatial awareness.
- Abstract(参考訳): 本研究では,静的および動的障害のあるクラッタ環境において,四足ロボットを用いた局所ナビゲーションを実現するための学習ベースのパイプラインを提案する。
高レベルのナビゲーションコマンドにより、ロボットは環境の明示的なマッピングをすることなく、深度カメラからフレームに基づいてターゲットの場所に安全に移動することができます。
まず、画像のシーケンスとカメラの現在の軌道を融合して、状態表現学習を用いて世界のモデルを形成する。
この軽量モジュールの出力は、強化学習で訓練された目標到達および障害物回避ポリシーに直接供給される。
パイプラインをこれらのコンポーネントに分離すると、わずか数十分でシミュレーションで完全にトレーニングできるサンプル効率的なポリシー学習ステージになることを示します。
重要な部分は状態表現であり、監視されていない方法で世界の隠れた状態を推定するだけでなく、現実のギャップを橋渡しし、シミュレーションから現実への転送を成功させるのに役立ちます。
シミュレーションと実演で4足歩行ロボットanymalを用いた実験では,ノイズの多い奥行き画像の処理や,トレーニング中の動的障害物の回避,局所的な空間意識の付与などが可能であった。
関連論文リスト
- Flow as the Cross-Domain Manipulation Interface [73.15952395641136]
Im2Flow2Actは、現実世界のロボットのトレーニングデータを必要とせずに、ロボットが現実世界の操作スキルを習得することを可能にする。
Im2Flow2Actはフロー生成ネットワークとフロー条件ポリシーの2つのコンポーネントから構成される。
我々はIm2Flow2Actの様々な実世界のタスクにおいて、剛性、調音、変形可能なオブジェクトの操作を含む能力を実証する。
論文 参考訳(メタデータ) (2024-07-21T16:15:02Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
本研究では,シミュレート・トゥ・リアルな視覚四重項ナビゲーションタスクにおける分布シフトに対する一般化とロバスト性を改善する手法を提案する。
まず,擬似飛行力学とガウススプラッティングを統合してシミュレータを構築し,その後,液状ニューラルネットワークを用いてロバストなナビゲーションポリシーを訓練する。
このようにして、我々は3次元ガウススプラッティングラディアンス場レンダリング、専門家による実演訓練データのプログラミング、およびLiquid Networkのタスク理解能力の進歩を組み合わせたフルスタックの模倣学習プロトコルを得る。
論文 参考訳(メタデータ) (2024-06-21T13:48:37Z) - Navigating to Objects in the Real World [76.1517654037993]
本稿では,古典的,モジュール的,エンド・ツー・エンドの学習手法と比較した,意味的視覚ナビゲーション手法に関する大規模な実証的研究について述べる。
モジュラー学習は実世界ではうまく機能し、90%の成功率に達しています。
対照的に、エンド・ツー・エンドの学習は、シミュレーションと現実の間の画像領域の差が大きいため、77%のシミュレーションから23%の実際の成功率へと低下する。
論文 参考訳(メタデータ) (2022-12-02T01:10:47Z) - On the Application of Efficient Neural Mapping to Real-Time Indoor
Localisation for Unmanned Ground Vehicles [5.137284292672375]
組込みプラットフォーム上でのリアルタイム推論が可能なコンパクトモデルを用いて,数cmの局所化精度を実現する。
トレーニングされたモデルをUGVプラットフォームにデプロイし、その効果をウェイポイントナビゲーションタスクで実証する。
論文 参考訳(メタデータ) (2022-11-09T07:23:28Z) - Sim-to-Real via Sim-to-Seg: End-to-end Off-road Autonomous Driving
Without Real Data [56.49494318285391]
我々は、オフロード自動運転の視覚的現実的ギャップを横断するRCANを再想像するSim2Segを紹介する。
これは、ランダム化されたシミュレーション画像をシミュレートされたセグメンテーションと深さマップに変換する学習によって行われる。
これにより、シミュレーションでエンドツーエンドのRLポリシーをトレーニングし、現実世界に直接デプロイできます。
論文 参考訳(メタデータ) (2022-10-25T17:50:36Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
本研究では,都市環境を横断する移動ロボットの局所的な地形を再構築する学習手法を提案する。
搭載されたカメラとロボットの軌道からの深度測定のストリームを用いて、ロボットの近傍の地形を推定する。
ノイズ測定とカメラ配置の盲点からの大量の欠落データにもかかわらず,シーンを忠実に再構築する3次元再構成モデルを提案する。
論文 参考訳(メタデータ) (2022-06-16T10:45:17Z) - On Embodied Visual Navigation in Real Environments Through Habitat [20.630139085937586]
ディープラーニングに基づくビジュアルナビゲーションモデルは、大量の視覚的観察に基づいてトレーニングされた場合、効果的なポリシーを学ぶことができる。
この制限に対処するため、仮想環境における視覚ナビゲーションポリシーを効率的に訓練するためのシミュレーションプラットフォームがいくつか提案されている。
本研究では,実世界の航法ピソードを走らせることなく,実世界の観測における航法方針の訓練と評価を効果的に行うことができることを示す。
論文 参考訳(メタデータ) (2020-10-26T09:19:07Z) - Embodied Visual Navigation with Automatic Curriculum Learning in Real
Environments [20.017277077448924]
NavACLは、ナビゲーションタスクに適した自動カリキュラム学習の方法である。
NavACLを用いて訓練した深層強化学習剤は、均一サンプリングで訓練した最先端エージェントよりも有意に優れていた。
我々のエージェントは、未知の乱雑な屋内環境から、RGB画像のみを使用して意味的に特定されたターゲットへ移動することができる。
論文 参考訳(メタデータ) (2020-09-11T13:28:26Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
強化学習(Reinforcement Learning, RL)は、複雑なロボットタスクを解決する強力なツールである。
RL は sim-to-real transfer problem として知られる現実世界では直接作用しない。
本稿では,点雲と環境ランダム化によって構築された観測空間を学習する手法を提案する。
論文 参考訳(メタデータ) (2020-07-27T17:46:59Z) - Stillleben: Realistic Scene Synthesis for Deep Learning in Robotics [33.30312206728974]
本稿では,シーン認識タスクの学習データを生成するための合成パイプラインについて述べる。
本手法は,物理シミュレーションを用いて,物体メッシュを物理的に現実的で密集したシーンに配置する。
私たちのパイプラインは、ディープニューラルネットワークのトレーニング中にオンラインで実行できます。
論文 参考訳(メタデータ) (2020-05-12T10:11:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。