論文の概要: On the Application of Efficient Neural Mapping to Real-Time Indoor
Localisation for Unmanned Ground Vehicles
- arxiv url: http://arxiv.org/abs/2211.04718v2
- Date: Tue, 2 Jan 2024 13:56:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 20:27:13.970594
- Title: On the Application of Efficient Neural Mapping to Real-Time Indoor
Localisation for Unmanned Ground Vehicles
- Title(参考訳): 無人地上車両のリアルタイム屋内ローカライズへの効率的なニューラルマッピングの適用について
- Authors: Christopher J. Holder and Muhammad Shafique
- Abstract要約: 組込みプラットフォーム上でのリアルタイム推論が可能なコンパクトモデルを用いて,数cmの局所化精度を実現する。
トレーニングされたモデルをUGVプラットフォームにデプロイし、その効果をウェイポイントナビゲーションタスクで実証する。
- 参考スコア(独自算出の注目度): 5.137284292672375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Global localisation from visual data is a challenging problem applicable to
many robotics domains. Prior works have shown that neural networks can be
trained to map images of an environment to absolute camera pose within that
environment, learning an implicit neural mapping in the process. In this work
we evaluate the applicability of such an approach to real-world robotics
scenarios, demonstrating that by constraining the problem to 2-dimensions and
significantly increasing the quantity of training data, a compact model capable
of real-time inference on embedded platforms can be used to achieve
localisation accuracy of several centimetres. We deploy our trained model
onboard a UGV platform, demonstrating its effectiveness in a waypoint
navigation task, wherein it is able to localise with a mean accuracy of 9cm at
a rate of 6fps running on the UGV onboard CPU, 35fps on an embedded GPU, or
220fps on a desktop GPU. Along with this work we will release a novel
localisation dataset comprising simulated and real environments, each with
training samples numbering in the tens of thousands.
- Abstract(参考訳): 視覚データからのグローバルローカライズは多くのロボティクス分野に適用できる困難な問題である。
以前の研究によると、ニューラルネットワークは環境の画像をその環境内の絶対的なカメラポーズにマッピングするように訓練でき、その過程で暗黙のニューラルマッピングを学ぶことができる。
本研究では, 実世界のロボットシナリオに適用可能性を評価し, 問題を2次元に制限し, トレーニングデータの量を大幅に増加させることで, 組込みプラットフォーム上でリアルタイム推論が可能なコンパクトモデルを用いて, 数センチの局所化精度を実現できることを示す。
トレーニングされたモデルをUGVプラットフォームにデプロイし、その有効性をウェイポイントナビゲーションタスクで示すことにより、UGV搭載CPU上での6fps、組み込みGPU上での35fps、デスクトップGPU上での220fpsの速度で、平均9cmの精度でローカライズすることが可能になります。
この作業に加えて、シミュレーションと実環境で構成された新しいローカライズデータセットをリリースします。
関連論文リスト
- Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
本稿では, 位置決めの精度を高めるために, 視点選択の重要性を強調し, アクティブな位置決め領域について検討する。
私たちのコントリビューションは、リアルタイム操作用に設計されたシンプルなアーキテクチャ、自己教師付きデータトレーニング方法、および実世界のロボティクスアプリケーションに適した計画フレームワークにマップを一貫して統合する能力による、データ駆動型アプローチの使用に関するものです。
論文 参考訳(メタデータ) (2024-07-22T12:32:09Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
本研究では,シミュレート・トゥ・リアルな視覚四重項ナビゲーションタスクにおける分布シフトに対する一般化とロバスト性を改善する手法を提案する。
まず,擬似飛行力学とガウススプラッティングを統合してシミュレータを構築し,その後,液状ニューラルネットワークを用いてロバストなナビゲーションポリシーを訓練する。
このようにして、我々は3次元ガウススプラッティングラディアンス場レンダリング、専門家による実演訓練データのプログラミング、およびLiquid Networkのタスク理解能力の進歩を組み合わせたフルスタックの模倣学習プロトコルを得る。
論文 参考訳(メタデータ) (2024-06-21T13:48:37Z) - Neural Implicit Dense Semantic SLAM [83.04331351572277]
本稿では,屋内シーンのメモリ効率,高密度な3次元形状,セマンティックセマンティックセグメンテーションをオンラインで学習する新しいRGBD vSLAMアルゴリズムを提案する。
私たちのパイプラインは、従来の3Dビジョンベースのトラッキングとループクローズとニューラルフィールドベースのマッピングを組み合わせたものです。
提案アルゴリズムはシーン認識を大幅に向上させ,様々なロボット制御問題を支援する。
論文 参考訳(メタデータ) (2023-04-27T23:03:52Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
本稿では,ディープラーニングに基づくコンピュータビジョンアルゴリズムを用いて,小型UAVのリアルタイムセンサ処理を実現する方法について述べる。
すべてのアルゴリズムは、ディープニューラルネットワークに基づく最先端の画像処理手法を用いて開発されている。
論文 参考訳(メタデータ) (2022-11-02T11:10:42Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
仮想データから絶対スケールを取得するための新しいフレームワークであるVRVOを提案する。
まず、モノクロ実画像とステレオ仮想データの両方を用いて、スケール対応の異種ネットワークをトレーニングする。
結果として生じるスケール一貫性の相違は、直接VOシステムと統合される。
論文 参考訳(メタデータ) (2022-03-11T01:51:54Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
合成ドメインのみにおけるラベルの使用に焦点を当てる。
提案手法では,ニューラル不変表現の学習方法と,シミュレータからデータをサンプリングする方法に関する理論的にインスピレーションを得た視点を導入する。
マルチセンサーデータを用いた鳥眼視車両分割作業におけるアプローチについて紹介する。
論文 参考訳(メタデータ) (2021-11-15T18:37:43Z) - Learning a State Representation and Navigation in Cluttered and Dynamic
Environments [6.909283975004628]
本稿では,四足ロボットによる局所ナビゲーションを実現するための学習ベースのパイプラインを提案する。
ロボットは、環境を明示的にマッピングすることなく、奥行きカメラのフレームに基づいて、安全な場所へ移動することができる。
本システムでは,ノイズの多い奥行き画像の処理が可能であり,訓練中の動的障害物を回避でき,局所的な空間意識を付与できることを示す。
論文 参考訳(メタデータ) (2021-03-07T13:19:06Z) - Visual Navigation in Real-World Indoor Environments Using End-to-End
Deep Reinforcement Learning [2.7071541526963805]
そこで本研究では,実際のロボットにトレーニング済みポリシーを直接展開する手法を提案する。
このポリシーは、現実世界の環境から収集された画像に基づいて微調整される。
30回のナビゲーション実験では、このロボットは86.7%以上のケースで目標の0.3メートル付近に到達した。
論文 参考訳(メタデータ) (2020-10-21T11:22:30Z) - Stillleben: Realistic Scene Synthesis for Deep Learning in Robotics [33.30312206728974]
本稿では,シーン認識タスクの学習データを生成するための合成パイプラインについて述べる。
本手法は,物理シミュレーションを用いて,物体メッシュを物理的に現実的で密集したシーンに配置する。
私たちのパイプラインは、ディープニューラルネットワークのトレーニング中にオンラインで実行できます。
論文 参考訳(メタデータ) (2020-05-12T10:11:00Z) - Learning Topometric Semantic Maps from Occupancy Grids [2.5234065536725963]
本稿では,このようなインスタンスベースのセマンティックマップを,占有グリッドから純粋に抽出する手法を提案する。
我々は、ランダムな大きさの地図からドア仮説を検出し、セグメンテーションし、抽出するために、深層学習技術を組み合わせている。
提案手法を,公開されている実世界の複数のデータセットに対して評価する。
論文 参考訳(メタデータ) (2020-01-10T22:06:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。