A Lower Bound for the Sample Complexity of Inverse Reinforcement
Learning
- URL: http://arxiv.org/abs/2103.04446v1
- Date: Sun, 7 Mar 2021 20:29:10 GMT
- Title: A Lower Bound for the Sample Complexity of Inverse Reinforcement
Learning
- Authors: Abi Komanduru, Jean Honorio
- Abstract summary: Inverse reinforcement learning (IRL) is the task of finding a reward function that generates a desired optimal policy for a given Markov Decision Process (MDP)
This paper develops an information-theoretic lower bound for the sample complexity of the finite state, finite action IRL problem.
- Score: 26.384010313580596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inverse reinforcement learning (IRL) is the task of finding a reward function
that generates a desired optimal policy for a given Markov Decision Process
(MDP). This paper develops an information-theoretic lower bound for the sample
complexity of the finite state, finite action IRL problem. A geometric
construction of $\beta$-strict separable IRL problems using spherical codes is
considered. Properties of the ensemble size as well as the Kullback-Leibler
divergence between the generated trajectories are derived. The resulting
ensemble is then used along with Fano's inequality to derive a sample
complexity lower bound of $O(n \log n)$, where $n$ is the number of states in
the MDP.
Related papers
- Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Settling the Sample Complexity of Online Reinforcement Learning [92.02082223856479]
We show how to achieve minimax-optimal regret without incurring any burn-in cost.
We extend our theory to unveil the influences of problem-dependent quantities like the optimal value/cost and certain variances.
arXiv Detail & Related papers (2023-07-25T15:42:11Z) - Improved Sample Complexity for Reward-free Reinforcement Learning under
Low-rank MDPs [43.53286390357673]
This paper focuses on reward-free reinforcement learning under low-rank MDP models.
We first provide the first known sample complexity lower bound for any algorithm under low-rank MDPs.
We then propose a novel model-based algorithm, coined RAFFLE, and show it can both find an $epsilon$-optimal policy and achieve an $epsilon$-accurate system identification.
arXiv Detail & Related papers (2023-03-20T04:39:39Z) - Optimal Horizon-Free Reward-Free Exploration for Linear Mixture MDPs [60.40452803295326]
We propose a new reward-free algorithm for learning linear Markov decision processes (MDPs)
At the core of our algorithm is uncertainty-weighted value-targeted regression with exploration-driven pseudo-reward.
We show that our algorithm only needs to explore $tilde O( d2varepsilon-2)$ episodes to find an $varepsilon$-optimal policy.
arXiv Detail & Related papers (2023-03-17T17:53:28Z) - Improved Sample Complexity Bounds for Distributionally Robust
Reinforcement Learning [3.222802562733787]
We consider the problem of learning a control policy that is robust against the parameter mismatches between the training environment and testing environment.
We propose the Robust Phased Value Learning (RPVL) algorithm to solve this problem for the uncertainty sets specified by four different divergences.
We show that our algorithm achieves $tildemathcalO(|mathcalSmathcalA| H5)$ sample complexity, which is uniformly better than the existing results.
arXiv Detail & Related papers (2023-03-05T21:47:08Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
A novel model-free algorithm is proposed to minimize regret in episodic reinforcement learning.
The proposed algorithm employs an em early-settled reference update rule, with the aid of two Q-learning sequences.
The design principle of our early-settled variance reduction method might be of independent interest to other RL settings.
arXiv Detail & Related papers (2021-10-09T21:13:48Z) - Towards Tight Bounds on the Sample Complexity of Average-reward MDPs [39.01663172393174]
We find an optimal policy of an infinite-horizon average-reward Markov decision process given access to a generative model.
We provide an algorithm that solves the problem using $widetildeO(t_mathrmmix epsilon-3)$ (oblivious) samples per state-action pair.
arXiv Detail & Related papers (2021-06-13T17:18:11Z) - Sample-Efficient Reinforcement Learning for Linearly-Parameterized MDPs
with a Generative Model [3.749193647980305]
This paper considers a Markov decision process (MDP) that admits a set of state-action features.
We show that a model-based approach (resp.$$Q-learning) provably learns an $varepsilon$-optimal policy with high probability.
arXiv Detail & Related papers (2021-05-28T17:49:39Z) - Tightening the Dependence on Horizon in the Sample Complexity of
Q-Learning [59.71676469100807]
This work sharpens the sample complexity of synchronous Q-learning to an order of $frac|mathcalS|| (1-gamma)4varepsilon2$ for any $0varepsilon 1$.
Our finding unveils the effectiveness of vanilla Q-learning, which matches that of speedy Q-learning without requiring extra computation and storage.
arXiv Detail & Related papers (2021-02-12T14:22:05Z) - Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal
Sample Complexity [67.02490430380415]
We show that model-based MARL achieves a sample complexity of $tilde O(|S||B|(gamma)-3epsilon-2)$ for finding the Nash equilibrium (NE) value up to some $epsilon$ error.
We also show that such a sample bound is minimax-optimal (up to logarithmic factors) if the algorithm is reward-agnostic, where the algorithm queries state transition samples without reward knowledge.
arXiv Detail & Related papers (2020-07-15T03:25:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.