A Memory Optimized Data Structure for Binary Chromosomes in Genetic
Algorithm
- URL: http://arxiv.org/abs/2103.04751v1
- Date: Wed, 24 Feb 2021 15:49:11 GMT
- Title: A Memory Optimized Data Structure for Binary Chromosomes in Genetic
Algorithm
- Authors: Avijit Basak
- Abstract summary: This paper presents a memory-optimized metadata-based data structure for implementation of binary chromosome in Genetic Algorithm.
The approach improves the memory utilization as well as capacity of retaining alleles.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a memory-optimized metadata-based data structure for
implementation of binary chromosome in Genetic Algorithm. In GA different types
of genotypes are used depending on the problem domain. Among these, binary
genotype is the most popular one for non-enumerated encoding owing to its
representational and computational simplicity. This paper proposes a
memory-optimized implementation approach of binary genotype. The approach
improves the memory utilization as well as capacity of retaining alleles.
Mathematical proof has been provided to establish the same.
Related papers
- Analysing the Influence of Reorder Strategies for Cartesian Genetic Programming [0.0]
We introduce three novel operators which reorder the genotype of a graph defined by CGP.
We show that the number of iterations until a solution is found and/or the fitness value improves by using CGP with a reorder method.
However, there is no consistently best performing reorder operator.
arXiv Detail & Related papers (2024-10-01T08:59:01Z) - Evaluating Genetic Algorithms through the Approximability Hierarchy [55.938644481736446]
In this paper, we analyze the usefulness of using genetic algorithms depending on the approximation class the problem belongs to.
In particular, we use the standard approximability hierarchy, showing that genetic algorithms are especially useful for the most pessimistic classes of the hierarchy.
arXiv Detail & Related papers (2024-02-01T09:18:34Z) - Decreasing the Computing Time of Bayesian Optimization using
Generalizable Memory Pruning [56.334116591082896]
We show a wrapper of memory pruning and bounded optimization capable of being used with any surrogate model and acquisition function.
Running BO on high-dimensional or massive data sets becomes intractable due to this time complexity.
All model implementations are run on the MIT Supercloud state-of-the-art computing hardware.
arXiv Detail & Related papers (2023-09-08T14:05:56Z) - Improving Time and Memory Efficiency of Genetic Algorithms by Storing
Populations as Minimum Spanning Trees of Patches [0.0]
In evolutionary algorithms the computational cost of applying operators and storing populations is comparable to the cost of fitness evaluation.
We show that storing the population as a minimum spanning tree, where vertices correspond to individuals but only contain meta-information about them, is a viable alternative to the straightforward implementation.
Our experiments suggest that significant, even improvements -- including execution of crossover operators! -- can be achieved in terms of both memory usage and computational costs.
arXiv Detail & Related papers (2023-06-29T05:12:14Z) - Breaking the Linear Iteration Cost Barrier for Some Well-known
Conditional Gradient Methods Using MaxIP Data-structures [49.73889315176884]
Conditional gradient methods (CGM) are widely used in modern machine learning.
Most efforts focus on reducing the number of iterations as a means to reduce the overall running time.
We show the first algorithm, where the cost per iteration is sublinear in the number of parameters, for many fundamental optimization algorithms.
arXiv Detail & Related papers (2021-11-30T05:40:14Z) - Hybrid gene selection approach using XGBoost and multi-objective genetic
algorithm for cancer classification [6.781877756322586]
We propose a two-stage gene selection approach by combining extreme gradient boosting (XGBoost) and a multi-objective optimization genetic algorithm (XGBoost-MOGA) for cancer classification in microarray datasets.
XGBoost-MOGA yields significantly better results than previous state-of-the-art algorithms in terms of various evaluation criteria, such as accuracy, F-score, precision, and recall.
arXiv Detail & Related papers (2021-05-30T03:43:22Z) - On the Genotype Compression and Expansion for Evolutionary Algorithms in
the Continuous Domain [7.152439554068968]
We consider genotype compression (where genotype is smaller than phenotype) and expansion (genotype is larger than phenotype)
We test our approach with several evolutionary algorithms over three sets of optimization problems.
arXiv Detail & Related papers (2021-05-24T18:56:18Z) - Object-Attribute Biclustering for Elimination of Missing Genotypes in
Ischemic Stroke Genome-Wide Data [2.0236506875465863]
Missing genotypes can affect the efficacy of machine learning approaches to identify the risk genetic variants of common diseases and traits.
The problem occurs when genotypic data are collected from different experiments with different DNA microarrays, each being characterised by its pattern of uncalled (missing) genotypes.
We use well-developed notions of object-attribute biclusters and formal concepts that correspond to dense subrelations in the binary relation.
arXiv Detail & Related papers (2020-10-22T12:27:43Z) - Random extrapolation for primal-dual coordinate descent [61.55967255151027]
We introduce a randomly extrapolated primal-dual coordinate descent method that adapts to sparsity of the data matrix and the favorable structures of the objective function.
We show almost sure convergence of the sequence and optimal sublinear convergence rates for the primal-dual gap and objective values, in the general convex-concave case.
arXiv Detail & Related papers (2020-07-13T17:39:35Z) - Supervised Quantile Normalization for Low-rank Matrix Approximation [50.445371939523305]
We learn the parameters of quantile normalization operators that can operate row-wise on the values of $X$ and/or of its factorization $UV$ to improve the quality of the low-rank representation of $X$ itself.
We demonstrate the applicability of these techniques on synthetic and genomics datasets.
arXiv Detail & Related papers (2020-02-08T21:06:02Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
We study clustering methods for binary data, first defining aggregation criteria that measure the compactness of clusters.
Five new and original methods are introduced, using neighborhoods and population behavior optimization metaheuristics.
From a set of 16 data tables generated by a quasi-Monte Carlo experiment, a comparison is performed for one of the aggregations using L1 dissimilarity, with hierarchical clustering, and a version of k-means: partitioning around medoids or PAM.
arXiv Detail & Related papers (2020-01-06T23:33:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.