A Dual-Memory Architecture for Reinforcement Learning on Neuromorphic
Platforms
- URL: http://arxiv.org/abs/2103.04780v1
- Date: Fri, 5 Mar 2021 01:54:22 GMT
- Title: A Dual-Memory Architecture for Reinforcement Learning on Neuromorphic
Platforms
- Authors: Wilkie Olin-Ammentorp, Yury Sokolov, Maxim Bazhenov
- Abstract summary: We describe a flexible architecture to carry out reinforcement learning on neuromorphic platforms.
This architecture was implemented using an Intel neuromorphic processor and demonstrated solving a variety of tasks using spiking dynamics.
Our study proposes a usable energy efficient solution for real-world RL applications and demonstrates applicability of the neuromorphic platforms for RL problems.
- Score: 3.0616624345970975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) is a foundation of learning in biological systems
and provides a framework to address numerous challenges with real-world
artificial intelligence applications. Efficient implementations of RL
techniques could allow for agents deployed in edge-use cases to gain novel
abilities, such as improved navigation, understanding complex situations and
critical decision making. Towards this goal, we describe a flexible
architecture to carry out reinforcement learning on neuromorphic platforms.
This architecture was implemented using an Intel neuromorphic processor and
demonstrated solving a variety of tasks using spiking dynamics. Our study
proposes a usable energy efficient solution for real-world RL applications and
demonstrates applicability of the neuromorphic platforms for RL problems.
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - A Neuromorphic Architecture for Reinforcement Learning from Real-Valued
Observations [0.34410212782758043]
Reinforcement Learning (RL) provides a powerful framework for decision-making in complex environments.
This paper presents a novel Spiking Neural Network (SNN) architecture for solving RL problems with real-valued observations.
arXiv Detail & Related papers (2023-07-06T12:33:34Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
It is crucial to optimize the performance of DRL-based agents while providing guarantees about their behavior.
This paper presents a novel technique for incorporating domain-expert knowledge into a constrained DRL training loop.
Our experiments demonstrate that using our approach to leverage expert knowledge dramatically improves the safety and the performance of the agent.
arXiv Detail & Related papers (2022-06-20T07:19:38Z) - Hyperparameter Tuning for Deep Reinforcement Learning Applications [0.3553493344868413]
We propose a distributed variable-length genetic algorithm framework to tune hyperparameters for various RL applications.
Our results show that with more generations, optimal solutions that require fewer training episodes and are computationally cheap while being more robust for deployment.
arXiv Detail & Related papers (2022-01-26T20:43:13Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
In this paper, we propose a combination of approaches that allow the agent to use low-quality demonstrations in complex vision-based environments.
Our proposed goal-oriented structuring of replay buffer allows the agent to automatically highlight sub-goals for solving complex hierarchical tasks in demonstrations.
The solution based on our algorithm beats all the solutions for the famous MineRL competition and allows the agent to mine a diamond in the Minecraft environment.
arXiv Detail & Related papers (2020-06-17T15:38:40Z) - Brain-inspired global-local learning incorporated with neuromorphic
computing [35.70151531581922]
We report a neuromorphic hybrid learning model by introducing a brain-inspired meta-learning paradigm and a differentiable spiking model incorporating neuronal dynamics and synaptic plasticity.
We demonstrate the advantages of this model in multiple different tasks, including few-shot learning, continual learning, and fault-tolerance learning in neuromorphic vision sensors.
arXiv Detail & Related papers (2020-06-05T04:24:19Z) - The Adversarial Resilience Learning Architecture for AI-based Modelling,
Exploration, and Operation of Complex Cyber-Physical Systems [0.0]
We describe the concept of Adversarial Learning (ARL) that formulates a new approach to complex environment checking and resilient operation.
The quintessence of ARL lies in both agents exploring the system and training each other without any domain knowledge.
Here, we introduce the ARL software architecture that allows to use a wide range of model-free as well as model-based DRL-based algorithms.
arXiv Detail & Related papers (2020-05-27T19:19:57Z) - Memristor Hardware-Friendly Reinforcement Learning [14.853739554366351]
We propose a memristive neuromorphic hardware implementation for the actor-critic algorithm in reinforcement learning.
We consider the task of balancing an inverted pendulum, a classical problem in both RL and control theory.
We believe that this study shows the promise of using memristor-based hardware neural networks for handling complex tasks through in-situ reinforcement learning.
arXiv Detail & Related papers (2020-01-20T01:08:44Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.