Exponentially accelerated approach to stationarity in Markovian open
quantum systems through the Mpemba effect
- URL: http://arxiv.org/abs/2103.05020v1
- Date: Mon, 8 Mar 2021 19:02:31 GMT
- Title: Exponentially accelerated approach to stationarity in Markovian open
quantum systems through the Mpemba effect
- Authors: Federico Carollo, Antonio Lasanta, Igor Lesanovsky
- Abstract summary: We show that the relaxation dynamics of Markovian open quantum systems can be accelerated exponentially by devising an optimal unitary transformation.
This initial "rotation" is engineered in such a way that the state of the quantum system becomes to the slowest decaying dynamical mode.
We illustrate our idea by showing how to achieve an exponential speed-up in the convergence to stationarity in Dicke models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ergodicity-breaking and slow relaxation are intriguing aspects of
nonequilibrium dynamics both in classical and in quantum settings. These
phenomena are typically associated with phase transitions, e.g. the emergence
of metastable regimes near a first-order transition or scaling dynamics in the
vicinity of critical points. Despite being of fundamental interest the
associated divergent time scales are a hindrance when trying to explore
steady-state properties. Here we show that the relaxation dynamics of Markovian
open quantum systems can be accelerated exponentially by devising an optimal
unitary transformation that is applied to the quantum system immediately before
the actual dynamics. This initial "rotation" is engineered in such a way that
the state of the quantum system becomes orthogonal to the slowest decaying
dynamical mode. We illustrate our idea -- which is inspired by the so-called
Mpemba effect, i.e., water freezing faster when initially heated up -- by
showing how to achieve an exponential speed-up in the convergence to
stationarity in Dicke models, and how to avoid metastable regimes in an
all-to-all interacting spin system.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - From Stochastic Hamiltonian to Quantum Simulation: Exploring Memory Effects in Exciton Dynamics [0.0]
We use Hamiltonian propagators to design quantum circuits that simulate exciton transport.
We identify a regime of "memory-assisted" quantum transport where time-correlated fluctuations allow the system to reach higher efficiency.
arXiv Detail & Related papers (2024-04-09T12:38:14Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Hyper-acceleration of quantum thermalization dynamics by bypassing
long-lived coherences: An analytical treatment [0.0]
We develop a perturbative technique for solving Markovian quantum dissipative dynamics.
We show how to bypass a long-lived coherent dynamics and accelerate the relaxation to thermal equilibration in a hyper-exponential manner.
arXiv Detail & Related papers (2023-01-15T16:34:02Z) - Accelerating the approach of dissipative quantum spin systems towards
stationarity through global spin rotations [0.0]
We consider open quantum systems governed by a time-independent Markovian Lindblad Master equation.
Such systems approach their stationary state on a timescale that is determined by the spectral gap of the generator of the Master equation dynamics.
We show that even far simpler transformations constructed by a global unitary spin rotation allow to exponentially speed up relaxation.
arXiv Detail & Related papers (2022-04-11T18:00:34Z) - Coherent and dissipative dynamics at quantum phase transitions [0.0]
Presentation is limited to issues related to, and controlled by, the quantum transition developed by closed many-body systems.
We focus on the physical conditions giving rise to a nontrivial interplay between critical modes and various dissipative mechanisms.
arXiv Detail & Related papers (2021-03-03T19:00:58Z) - Dynamical replica analysis of quantum annealing [0.0]
An interesting alternative approach to the dynamics of quantum spin systems was proposed about a decade ago.
It involves creating a proxy dynamics via the Suzuki-Trotter mapping of the quantum ensemble to a classical one.
In this chapter we give an introduction to this approach, focusing on the ideas and assumptions behind the derivations.
arXiv Detail & Related papers (2020-10-23T12:17:38Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.