Biogeography-Based Optimization of RC structures including static
soil-structure interaction
- URL: http://arxiv.org/abs/2103.05129v1
- Date: Mon, 8 Mar 2021 22:48:04 GMT
- Title: Biogeography-Based Optimization of RC structures including static
soil-structure interaction
- Authors: I.A. Negrin, D. Roose, E.L. Chagoyen, G. Lombaert
- Abstract summary: We present a method to minimize the cost of the structural design of reinforced concrete structures using Biogeography-Based Optimization.
SAP2000 is used as computational engine, taking into account modelling aspects such as static soil-structure interaction (SSSI)
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A method to minimize the cost of the structural design of reinforced concrete
structures using Biogeography-Based Optimization, an evolutionary algorithm, is
presented. SAP2000 is used as computational engine, taking into account
modelling aspects such as static soil-structure interaction (SSSI). The
optimization problem is formulated to properly reflect an actual design
problem, limiting e.g. the size of reinforcement bars to commercially available
sections. Strategies to reduce the computational cost of the optimization
procedure are proposed and an extensive parameter tuning was performed. The
resulting tuned optimization algorithm allows to reduce the direct cost of the
construction of a particular structure project with 21% compared to a design
based on traditional criteria. We also evaluate the effect on the cost of the
superstructure when SSSI is takeninto account.
Related papers
- Accelerated Gradient-based Design Optimization Via Differentiable Physics-Informed Neural Operator: A Composites Autoclave Processing Case Study [0.0]
We introduce a novel Physics-Informed DeepONet (PIDON) architecture to effectively model the nonlinear behavior of complex engineering systems.
We demonstrate the effectiveness of this framework in the optimization of aerospace-grade composites curing processes achieving a 3x speedup.
The proposed model has the potential to be used as a scalable and efficient optimization tool for broader applications in advanced engineering and digital twin systems.
arXiv Detail & Related papers (2025-02-17T07:11:46Z) - Reqo: A Robust and Explainable Query Optimization Cost Model [2.184775414778289]
We propose a tree model architecture based on Bidirectional Graph Neural Networks (Bi-GNN) aggregated by Gated Recurrent Units (GRUs)
We implement a novel learning-to-rank cost model that effectively quantifies the uncertainty in cost estimates using approximate probabilistic ML.
In addition, we propose the first explainability technique specifically designed for learning-based cost models.
arXiv Detail & Related papers (2025-01-29T04:48:51Z) - Cliqueformer: Model-Based Optimization with Structured Transformers [102.55764949282906]
Large neural networks excel at prediction tasks, but their application to design problems, such as protein engineering or materials discovery, requires solving offline model-based optimization (MBO) problems.
We present Cliqueformer, a transformer-based architecture that learns the black-box function's structure through functional graphical models (FGM)
Across various domains, including chemical and genetic design tasks, Cliqueformer demonstrates superior performance compared to existing methods.
arXiv Detail & Related papers (2024-10-17T00:35:47Z) - DISP-LLM: Dimension-Independent Structural Pruning for Large Language Models [62.98273649512654]
Large Language Models (LLMs) have achieved remarkable success in various natural language processing tasks.
Increased memory and computational costs associated with these models pose significant challenges for deployment on resource-limited devices.
We propose a novel approach that relaxes the constraint imposed by regular structural pruning methods.
arXiv Detail & Related papers (2024-10-15T18:51:18Z) - A novel design update framework for topology optimization with quantum annealing: Application to truss and continuum structures [0.0]
This paper presents a novel design update strategy for topology optimization, as an iterative optimization.
The key contribution lies in incorporating a design updater concept with quantum annealing, applicable to both truss and continuum structures.
Results indicate that the proposed framework successfully finds optimal topologies similar to benchmark results.
arXiv Detail & Related papers (2024-06-27T02:07:38Z) - Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
We identify and test new hybrid architectures constructed from a variety of computational primitives.
We experimentally validate the resulting architectures via an extensive compute-optimal and a new state-optimal scaling law analysis.
We find MAD synthetics to correlate with compute-optimal perplexity, enabling accurate evaluation of new architectures.
arXiv Detail & Related papers (2024-03-26T16:33:12Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Parameter Tuning Strategies for Metaheuristic Methods Applied to
Discrete Optimization of Structural Design [0.0]
This paper presents several strategies to tune the parameters of metaheuristic methods for (discrete) design optimization of reinforced concrete (RC) structures.
A novel utility metric is proposed, based on the area under the average performance curve.
arXiv Detail & Related papers (2021-10-12T17:34:39Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
An AI-assisted design method based on topology optimization is presented, which is able to obtain optimized designs in a direct way.
Designs are provided by an artificial neural network, the predictor, on the basis of boundary conditions and degree of filling as input data.
arXiv Detail & Related papers (2020-12-11T14:33:27Z) - Learning to simulate and design for structural engineering [0.0]
In this work, we formulate the building structures as graphs and create an end-to-end pipeline that can learn to propose the optimal cross-sections of columns and beams.
The performance of the proposed structural designs is comparable to the ones optimized by genetic algorithm (GA) with all the constraints satisfied.
arXiv Detail & Related papers (2020-03-20T05:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.