論文の概要: Anomalous entities detection using a cascade of deep learning models
- arxiv url: http://arxiv.org/abs/2103.05164v1
- Date: Tue, 9 Mar 2021 01:23:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-11 16:43:33.252955
- Title: Anomalous entities detection using a cascade of deep learning models
- Title(参考訳): 深層学習モデルのカスケードを用いた異常要素検出
- Authors: Hamza Riaz, Muhammad Uzair and Habib Ullah
- Abstract要約: 本稿では,試験ホールの複雑な状況において異常を検知する新しい手法を提案する。
提案手法は,深層畳み込みニューラルネットワークモデルのカスケードを用いる。
提案手法は異常な物体を検知し,異常な挙動を高精度に保証できることを示す。
- 参考スコア(独自算出の注目度): 2.9005223064604078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human actions that do not conform to usual behavior are considered as
anomalous and such actors are called anomalous entities. Detection of anomalous
entities using visual data is a challenging problem in computer vision. This
paper presents a new approach to detect anomalous entities in complex
situations of examination halls. The proposed method uses a cascade of deep
convolutional neural network models. In the first stage, we apply a pretrained
model of human pose estimation on frames of videos to extract key feature
points of body. Patches extracted from each key point are utilized in the
second stage to build a densely connected deep convolutional neural network
model for detecting anomalous entities. For experiments we collect a video
database of students undertaking examination in a hall. Our results show that
the proposed method can detect anomalous entities and warrant unusual behavior
with high accuracy.
- Abstract(参考訳): 通常の行動に従わない人間の行動は異常と見なされ、そのような行為を異常行為と呼ぶ。
視覚データを用いた異常物体の検出はコンピュータビジョンにおける課題である。
本稿では,試験ホールの複雑な状況において異常を検知する新しい手法を提案する。
提案手法は,深層畳み込みニューラルネットワークモデルのカスケードを用いる。
第1段階では,ビデオのフレーム上で人間のポーズ推定の事前学習モデルを適用し,身体の特徴点を抽出する。
各キーポイントから抽出されたパッチを第2段階で利用し、高密度に結合した深い畳み込みニューラルネットワークモデルを構築し、異常物質を検出する。
実験のために,ホールで受験した学生のビデオデータベースを収集する。
提案手法は異常な物体を検知し,異常な挙動を高精度に保証できることを示す。
関連論文リスト
- Neural Collaborative Filtering to Detect Anomalies in Human Semantic Trajectories [0.5774786149181392]
本研究では,人体軌跡の異常を検出するための軽量な異常検出モデルを構築した。
アルゴリズムは2つの主要モジュールから構成される。1つは協調フィルタリングモジュールであり、これは人間の正常な移動を興味のある場所にモデル化するための協調フィルタリングである。
提案手法の有効性を検証するために,シミュレーションおよび実世界のデータセットを用いて,多数の最先端の軌道異常検出手法と比較した広範囲な実験を行った。
論文 参考訳(メタデータ) (2024-09-27T03:28:11Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - Human Kinematics-inspired Skeleton-based Video Anomaly Detection [3.261881784285304]
我々は,HKVAD (Human Kinematic-inspired Video Anomaly Detection) という新しいアイデアを紹介した。
提案手法は,計算資源を最小限に抑え,その有効性と可能性を検証する。
論文 参考訳(メタデータ) (2023-09-27T13:52:53Z) - Understanding the Challenges and Opportunities of Pose-based Anomaly
Detection [2.924868086534434]
ポーズベースの異常検出(Pose-based anomaly detection)は、ビデオフレームから抽出された人間のポーズを調べることによって、異常な出来事や行動を検出するビデオ分析技術である。
本研究では、ポーズに基づく異常検出の難しさをよりよく理解するために、2つのよく知られたビデオ異常データセットの特徴を分析し、定量化する。
これらの実験は、ポーズベースの異常検出と現在利用可能なデータセットをより理解する上で有益であると考えています。
論文 参考訳(メタデータ) (2023-03-09T18:09:45Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
本稿では,ビデオ監視における異常検出問題に対処する。
異常事象の固有な規則性と不均一性のため、問題は正規性モデリング戦略と見なされる。
我々のモデルは、トレーニング中に異常なサンプルを見ることなく、オブジェクト中心の正規パターンを学習する。
論文 参考訳(メタデータ) (2022-03-07T19:28:39Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
異常検出は、機械学習の基本的な問題であるが、難しい問題である。
本稿では,非教師付き異常検出のための新しい強力なフレームワークであるSLA$2$Pを提案する。
論文 参考訳(メタデータ) (2021-11-25T03:53:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - MOCCA: Multi-Layer One-Class ClassificAtion for Anomaly Detection [16.914663209964697]
我々は,Multi-Layer One-Class Classification (MOCCA) と呼ばれる異常検出問題に対するディープラーニングアプローチを提案する。
異なる深さで抽出された情報を利用して異常なデータインスタンスを検出することで、ディープニューラルネットワークのピースワイズ的性質を明示的に活用します。
本稿では,本手法が文献で利用可能な最先端手法と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2020-12-09T08:32:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。