論文の概要: Human Kinematics-inspired Skeleton-based Video Anomaly Detection
- arxiv url: http://arxiv.org/abs/2309.15662v1
- Date: Wed, 27 Sep 2023 13:52:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-28 13:35:25.425422
- Title: Human Kinematics-inspired Skeleton-based Video Anomaly Detection
- Title(参考訳): ヒトキネマティクスによる骨格型ビデオ異常検出
- Authors: Jian Xiao, Tianyuan Liu, Genlin Ji
- Abstract要約: 我々は,HKVAD (Human Kinematic-inspired Video Anomaly Detection) という新しいアイデアを紹介した。
提案手法は,計算資源を最小限に抑え,その有効性と可能性を検証する。
- 参考スコア(独自算出の注目度): 3.261881784285304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous approaches to detecting human anomalies in videos have typically
relied on implicit modeling by directly applying the model to video or skeleton
data, potentially resulting in inaccurate modeling of motion information. In
this paper, we conduct an exploratory study and introduce a new idea called
HKVAD (Human Kinematic-inspired Video Anomaly Detection) for video anomaly
detection, which involves the explicit use of human kinematic features to
detect anomalies. To validate the effectiveness and potential of this
perspective, we propose a pilot method that leverages the kinematic features of
the skeleton pose, with a specific focus on the walking stride, skeleton
displacement at feet level, and neck level. Following this, the method employs
a normalizing flow model to estimate density and detect anomalies based on the
estimated density. Based on the number of kinematic features used, we have
devised three straightforward variant methods and conducted experiments on two
highly challenging public datasets, ShanghaiTech and UBnormal. Our method
achieves good results with minimal computational resources, validating its
effectiveness and potential.
- Abstract(参考訳): ビデオにおける人間の異常を検出するための従来のアプローチは、通常、ビデオや骨格データに直接モデルを適用することによって暗黙のモデリングに頼っている。
本稿では,ビデオ異常検出のためのHKVAD(Human Kinematic-inspireed Video Anomaly Detection)という新しいアイデアを導入する。
この視点の有効性と可能性を検証するため, 歩行ストライド, 足底の骨格変位, 首の高さに特異的に焦点をあてて, 骨格ポーズの運動特性を利用するパイロット手法を提案する。
次に, 正規化流れモデルを用いて密度を推定し, 推定密度に基づいて異常を検出する。
キネマティックな特徴の数に基づいて,簡単な3つの手法を考案し,上海技術とUBnormalという,非常に困難な2つの公開データセットの実験を行った。
提案手法は,計算資源を最小化し,その有効性と可能性を検証する。
関連論文リスト
- Occlusion-Aware 3D Motion Interpretation for Abnormal Behavior Detection [10.782354892545651]
我々は,メッシュ頂点とヒト関節の3次元座標をモノクロビデオから再構成し,運動異常を識別するOAD2Dを提案する。
動作特徴の定量化にVQVAEを用いるM2Tモデルと組み合わせることで、異常姿勢推定を再構成する。
本研究は, 重度・自己閉塞性に対する異常行動検出のロバスト性を示すものである。
論文 参考訳(メタデータ) (2024-07-23T18:41:16Z) - 3D Kinematics Estimation from Video with a Biomechanical Model and
Synthetic Training Data [4.130944152992895]
2つの入力ビューから3Dキネマティクスを直接出力するバイオメカニクス対応ネットワークを提案する。
実験により, 提案手法は, 合成データにのみ訓練されたものであり, 従来の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-02-20T17:33:40Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - Future Video Prediction from a Single Frame for Video Anomaly Detection [0.38073142980732994]
ビデオ異常検出(VAD)はコンピュータビジョンにおいて重要であるが難しい課題である。
本稿では,ビデオ異常検出のための新しいプロキシタスクとして,将来のフレーム予測プロキシタスクを紹介する。
このプロキシタスクは、より長い動きパターンを学習する従来の手法の課題を軽減する。
論文 参考訳(メタデータ) (2023-08-15T14:04:50Z) - Understanding the Challenges and Opportunities of Pose-based Anomaly
Detection [2.924868086534434]
ポーズベースの異常検出(Pose-based anomaly detection)は、ビデオフレームから抽出された人間のポーズを調べることによって、異常な出来事や行動を検出するビデオ分析技術である。
本研究では、ポーズに基づく異常検出の難しさをよりよく理解するために、2つのよく知られたビデオ異常データセットの特徴を分析し、定量化する。
これらの実験は、ポーズベースの異常検出と現在利用可能なデータセットをより理解する上で有益であると考えています。
論文 参考訳(メタデータ) (2023-03-09T18:09:45Z) - Stereo Neural Vernier Caliper [57.187088191829886]
学習に基づくステレオ3Dオブジェクト検出のための新しいオブジェクト中心フレームワークを提案する。
初期3次元立方体推定値から改良された更新を予測する方法の問題に対処する。
提案手法は,KITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2022-03-21T14:36:07Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
本稿では,ビデオ監視における異常検出問題に対処する。
異常事象の固有な規則性と不均一性のため、問題は正規性モデリング戦略と見なされる。
我々のモデルは、トレーニング中に異常なサンプルを見ることなく、オブジェクト中心の正規パターンを学習する。
論文 参考訳(メタデータ) (2022-03-07T19:28:39Z) - Learning Local Recurrent Models for Human Mesh Recovery [50.85467243778406]
本稿では,人間のメッシュを標準的な骨格モデルに従って複数の局所的に分割するビデオメッシュ復元手法を提案する。
次に、各局所部分の力学を別個のリカレントモデルでモデル化し、各モデルは、人体の既知の運動構造に基づいて適切に条件付けする。
これにより、構造的インフォームドな局所的再帰学習アーキテクチャが実現され、アノテーションを使ってエンドツーエンドでトレーニングすることができる。
論文 参考訳(メタデータ) (2021-07-27T14:30:33Z) - Anomalous entities detection using a cascade of deep learning models [2.9005223064604078]
本稿では,試験ホールの複雑な状況において異常を検知する新しい手法を提案する。
提案手法は,深層畳み込みニューラルネットワークモデルのカスケードを用いる。
提案手法は異常な物体を検知し,異常な挙動を高精度に保証できることを示す。
論文 参考訳(メタデータ) (2021-03-09T01:23:19Z) - Motion-Excited Sampler: Video Adversarial Attack with Sparked Prior [63.11478060678794]
そこで本研究では,前もってモーションアウェアノイズを得るための効果的なモーションエキサイティングサンプリング手法を提案する。
より少ないクエリ数で様々なビデオ分類モデルを攻撃することができる。
論文 参考訳(メタデータ) (2020-03-17T10:54:12Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
ビデオ異常検出に自己学習深層順序回帰を適用することで,既存の手法の2つの重要な限界を克服できることを示す。
我々は,手動で正規/異常データをラベル付けすることなく,共同表現学習と異常スコアリングを可能にする,エンドツーエンドのトレーニング可能なビデオ異常検出手法を考案した。
論文 参考訳(メタデータ) (2020-03-15T08:44:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。