Non-Gaussian mechanical motion via single and multi-phonon subtraction
from a thermal state
- URL: http://arxiv.org/abs/2103.05175v2
- Date: Fri, 22 Oct 2021 12:55:21 GMT
- Title: Non-Gaussian mechanical motion via single and multi-phonon subtraction
from a thermal state
- Authors: Georg Enzian, Lars Freisem, John J. Price, Andreas \O. Svela, Jack
Clarke, Biveen Shajilal, Jiri Janousek, Ben C. Buchler, Ping Koy Lam, and
Michael R. Vanner
- Abstract summary: We experimentally perform heralded single- and multi-phonon subtraction via photon counting to a laser-cooled mechanical thermal state with a Brillouin optomechanical system at room temperature.
The techniques developed here advance the state-of-the-art for optics-based tomography of mechanical states and will be useful for a broad range of applied and fundamental studies.
- Score: 0.37750087362568563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum optical measurement techniques offer a rich avenue for quantum
control of mechanical oscillators via cavity optomechanics. In particular, a
powerful yet little explored combination utilizes optical measurements to
perform heralded non-Gaussian mechanical state preparation followed by
tomography to determine the mechanical phase-space distribution. Here, we
experimentally perform heralded single- and multi-phonon subtraction via photon
counting to a laser-cooled mechanical thermal state with a Brillouin
optomechanical system at room temperature, and use optical heterodyne detection
to measure the $s$-parameterized Wigner distribution of the non-Gaussian
mechanical states generated. The techniques developed here advance the
state-of-the-art for optics-based tomography of mechanical states and will be
useful for a broad range of applied and fundamental studies that utilize
mechanical quantum-state engineering and tomography.
Related papers
- Optimizing Entanglement in Nanomechanical Resonators through Quantum Squeezing and Parametric Amplification [0.0]
We propose a scheme that optimize entanglement in nanomechanical resonators through quantum state transfer of squeezed fields assisted by radiation pressure.
The system is driven by red-detuned laser fields, which enable simultaneous cooling of the mechanical resonators.
arXiv Detail & Related papers (2024-10-20T09:37:30Z) - Coherent Control of an Optical Quantum Dot Using Phonons and Photons [5.1635749330879905]
We describe unique features and advantages of optical two-level systems, or qubits, for optomechanics.
The qubit state can be coherently controlled using both phonons and resonant or detuned photons.
Time-correlated single-photon counting measurements reveal the control of QD population dynamics.
arXiv Detail & Related papers (2024-04-02T16:25:35Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Dissipative Optomechanics in High-Frequency Nanomechanical Resonators [0.0]
We show the first dissipative optomechanical system operating in the sideband-resolved regime, where the mechanical frequency is larger than the optical linewidth.
Our figures represent a two-order-of-magnitude leap in the mechanical frequency and a tenfold increase in the dissipative optomechanical coupling rate compared to previous works.
arXiv Detail & Related papers (2022-12-30T03:16:31Z) - Phononically shielded photonic-crystal mirror membranes for cavity
quantum optomechanics [48.7576911714538]
We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor.
We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror.
We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature.
arXiv Detail & Related papers (2022-12-23T04:53:04Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Topological photon pairs in a superconducting quantum metamaterial [44.62475518267084]
We use an array of superconducting qubits to engineer a nontrivial quantum metamaterial.
By performing microwave spectroscopy of the fabricated array, we experimentally observe the spectrum of elementary excitations.
We find not only the single-photon topological states but also the bands of exotic bound photon pairs arising due to the inherent anharmonicity of qubits.
arXiv Detail & Related papers (2020-06-23T07:04:27Z) - Single-Phonon Addition and Subtraction to a Mechanical Thermal State [0.5980627596223345]
Adding or subtracting a single quantum of excitation to a thermal state of a bosonic system has the counter-intuitive effect of approximately doubling its mean occupation.
We perform the first experimental demonstration of this effect outside optics by implementing single-phonon addition and subtraction.
We observe this doubling of the mechanical thermal fluctuations to a high precision using a detection scheme that combines single-photon counting and optical heterodyne detection.
arXiv Detail & Related papers (2020-06-20T15:41:43Z) - Macroscopic quantumness of optically conditioned mechanical systems [0.0]
We address the macroscopic quantumness of the state of mechanical systems subjected to conditional protocols devised for state engineering in cavity optomechanics.
We show how measurements performed over the cavity field are able to steer the latter towards large quantum coherent states.
Our study is relevant for and applicable to a broad range of settings, from clamped to levitated mechanical systems.
arXiv Detail & Related papers (2020-04-23T18:01:04Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.