論文の概要: BASAR:Black-box Attack on Skeletal Action Recognition
- arxiv url: http://arxiv.org/abs/2103.05266v2
- Date: Wed, 10 Mar 2021 15:44:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-11 19:01:20.638287
- Title: BASAR:Black-box Attack on Skeletal Action Recognition
- Title(参考訳): BASAR:ブラックボックス攻撃による骨格的行動認識
- Authors: Yunfeng Diao and Tianjia Shao and Yong-Liang Yang and Kun Zhou and He
Wang
- Abstract要約: スケルトンベースの活動認識装置は、認識者の完全な知識が攻撃者にアクセスできるときに、敵の攻撃に対して脆弱である。
本稿では,そのような脅威がブラックボックスの設定下でも存在することを示す。
BASARを通じて、敵の攻撃は真の脅威であるだけでなく、極めて偽りであることを示す。
- 参考スコア(独自算出の注目度): 32.88446909707521
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Skeletal motion plays a vital role in human activity recognition as either an
independent data source or a complement. The robustness of skeleton-based
activity recognizers has been questioned recently, which shows that they are
vulnerable to adversarial attacks when the full-knowledge of the recognizer is
accessible to the attacker. However, this white-box requirement is overly
restrictive in most scenarios and the attack is not truly threatening. In this
paper, we show that such threats do exist under black-box settings too. To this
end, we propose the first black-box adversarial attack method BASAR. Through
BASAR, we show that adversarial attack is not only truly a threat but also can
be extremely deceitful, because on-manifold adversarial samples are rather
common in skeletal motions, in contrast to the common belief that adversarial
samples only exist off-manifold. Through exhaustive evaluation and comparison,
we show that BASAR can deliver successful attacks across models, data, and
attack modes. Through harsh perceptual studies, we show that it achieves
effective yet imperceptible attacks. By analyzing the attack on different
activity recognizers, BASAR helps identify the potential causes of their
vulnerability and provides insights on what classifiers are likely to be more
robust against attack.
- Abstract(参考訳): 骨格運動は、独立したデータソースまたは補完として人間の活動認識に重要な役割を果たします。
骨格に基づく活動認識器の堅牢性は近年疑問視されており、認識器の完全知識が攻撃者にアクセス可能な場合、敵攻撃に対して脆弱であることが示されている。
しかし、このホワイトボックス要件はたいていのシナリオでは過度に制限され、攻撃は真の脅威ではない。
本稿では,そのような脅威がブラックボックスの設定下でも存在することを示す。
そこで本研究では,最初のブラックボックス対人攻撃法BASARを提案する。
BASAR を通じて、敵対的攻撃は真に脅威であるだけでなく、非常に詐欺的であることを示す。なぜなら、対逆的サンプルは非多様体のみが存在するという共通の信念とは対照的に、オンマニホールド敵対的サンプルは骨格運動においてかなり一般的であるからである。
徹底的な評価と比較を通じて,バザールはモデル,データ,攻撃モードにまたがって攻撃を成功させることができることを示した。
過酷な知覚研究を通じて、効果的だが知覚不能な攻撃が達成できることを実証する。
異なるアクティビティ認識に対する攻撃を分析することで、BASARは脆弱性の潜在的な原因を特定し、どの分類器が攻撃に対してより堅牢になるかについての洞察を提供します。
関連論文リスト
- Understanding the Vulnerability of Skeleton-based Human Activity Recognition via Black-box Attack [53.032801921915436]
HAR(Human Activity Recognition)は、自動運転車など、幅広い用途に採用されている。
近年,敵対的攻撃に対する脆弱性から,骨格型HAR法の堅牢性に疑問が呈されている。
攻撃者がモデルの入出力しかアクセスできない場合でも、そのような脅威が存在することを示す。
BASARと呼ばれる骨格をベースとしたHARにおいて,最初のブラックボックス攻撃手法を提案する。
論文 参考訳(メタデータ) (2022-11-21T09:51:28Z) - Rethinking Textual Adversarial Defense for Pre-trained Language Models [79.18455635071817]
文献レビューでは、事前訓練された言語モデル(PrLM)が敵の攻撃に弱いことが示されている。
本稿では、現在の敵攻撃アプローチにより、より自然で知覚不能な敵の例を生成するための新しい指標(異常の度合い)を提案する。
我々は,我々のユニバーサル・ディフェンス・フレームワークが,他の特定のディフェンスと同等あるいはそれ以上のアフターアタック・ディフェンスの精度を達成することを示す。
論文 参考訳(メタデータ) (2022-07-21T07:51:45Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - Saliency Attack: Towards Imperceptible Black-box Adversarial Attack [35.897117965803666]
そこで本稿では, ほとんど認識できない敵の例を生成するために, 摂動を小さな正弦領域に限定することを提案する。
我々はまた、より優れた非受容性を達成するために、サリアント地域の摂動を改善すべく、新しいブラックボックス攻撃であるサリアンシーアタックを提案する。
論文 参考訳(メタデータ) (2022-06-04T03:56:07Z) - RobustSense: Defending Adversarial Attack for Secure Device-Free Human
Activity Recognition [37.387265457439476]
我々は、共通の敵攻撃を防御する新しい学習フレームワーク、RobustSenseを提案する。
本手法は,無線による人間行動認識と人物識別システムに有効である。
論文 参考訳(メタデータ) (2022-04-04T15:06:03Z) - Adversarial Visual Robustness by Causal Intervention [56.766342028800445]
敵の訓練は、敵の例に対する事実上最も有望な防御である。
しかし、その受動性は必然的に未知の攻撃者への免疫を妨げる。
我々は、敵対的脆弱性の因果的視点を提供する: 原因は、学習に普遍的に存在する共同創設者である。
論文 参考訳(メタデータ) (2021-06-17T14:23:54Z) - Understanding the Robustness of Skeleton-based Action Recognition under
Adversarial Attack [29.850716475485715]
3次元骨格運動に依存する行動認識装置を攻撃する新しい方法を提案する。
本手法は,攻撃の不可避性を保証する革新的な知覚損失を含む。
提案手法は, 時系列データの一種である3次元骨格運動に対する敵意攻撃が, 従来の敵意攻撃問題とは大きく異なることを示す。
論文 参考訳(メタデータ) (2021-03-09T10:53:58Z) - AdvMind: Inferring Adversary Intent of Black-Box Attacks [66.19339307119232]
本稿では,ブラックボックス攻撃の敵意を頑健に推定する新たな評価モデルであるAdvMindを提案する。
平均的なAdvMindは、3回未満のクエリバッチを観察した後、75%以上の精度で敵の意図を検出する。
論文 参考訳(メタデータ) (2020-06-16T22:04:31Z) - Deflecting Adversarial Attacks [94.85315681223702]
我々は、攻撃者が攻撃対象クラスに似た入力を生成することによって、敵攻撃を「防御」するこのサイクルを終わらせる新しいアプローチを提案する。
本稿ではまず,3つの検出機構を組み合わせたカプセルネットワークに基づくより強力な防御手法を提案する。
論文 参考訳(メタデータ) (2020-02-18T06:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。