Convolutional Neural Network Denoising in Fluorescence Lifetime Imaging
Microscopy (FLIM)
- URL: http://arxiv.org/abs/2103.05448v1
- Date: Sun, 7 Mar 2021 03:27:44 GMT
- Title: Convolutional Neural Network Denoising in Fluorescence Lifetime Imaging
Microscopy (FLIM)
- Authors: Varun Mannam, Yide Zhang, Xiaotong Yuan, Takashi Hato, Pierre C.
Dagher, Evan L. Nichols, Cody J. Smith, Kenneth W. Dunn, and Scott Howard
- Abstract summary: Fluorescence lifetime imaging microscopy (FLIM) systems are limited by their slow processing speed, low signal-to-noise ratio (SNR), and expensive and challenging hardware setups.
In this work, we demonstrate applying a denoising convolutional network to improve FLIM SNR.
The network will be integrated with an instant FLIM system with fast data acquisition based on analog signal processing, high SNR using high-efficiency pulse-modulation, and cost-effective implementation utilizing off-the-shelf radio-frequency components.
- Score: 16.558653673949838
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fluorescence lifetime imaging microscopy (FLIM) systems are limited by their
slow processing speed, low signal-to-noise ratio (SNR), and expensive and
challenging hardware setups. In this work, we demonstrate applying a denoising
convolutional network to improve FLIM SNR. The network will be integrated with
an instant FLIM system with fast data acquisition based on analog signal
processing, high SNR using high-efficiency pulse-modulation, and cost-effective
implementation utilizing off-the-shelf radio-frequency components. Our instant
FLIM system simultaneously provides the intensity, lifetime, and phasor plots
\textit{in vivo} and \textit{ex vivo}. By integrating image denoising using the
trained deep learning model on the FLIM data, provide accurate FLIM phasor
measurements are obtained. The enhanced phasor is then passed through the
K-means clustering segmentation method, an unbiased and unsupervised machine
learning technique to separate different fluorophores accurately. Our
experimental \textit{in vivo} mouse kidney results indicate that introducing
the deep learning image denoising model before the segmentation effectively
removes the noise in the phasor compared to existing methods and provides
clearer segments. Hence, the proposed deep learning-based workflow provides
fast and accurate automatic segmentation of fluorescence images using instant
FLIM. The denoising operation is effective for the segmentation if the FLIM
measurements are noisy. The clustering can effectively enhance the detection of
biological structures of interest in biomedical imaging applications.
Related papers
- Resolution Enhancement of Under-sampled Photoacoustic Microscopy Images using Implicit Neural Representations [4.672315172406826]
Acoustic-Resolution Photoacoustic Microscopy (AR-PAM) is promising for subcutaneous vascular imaging.
Traditional deconvolution methods use the Point Spreadvolution (PSF) to improve resolution.
We propose an approach based on Implicit Neural Representations (INR)
Our method learns a continuous mapping from spatial coordinates to initial acoustic pressure, overcoming the limitations of discrete imaging.
arXiv Detail & Related papers (2024-10-15T00:44:57Z) - Speeding up Photoacoustic Imaging using Diffusion Models [0.0]
Photoacoustic Microscopy (PAM) integrates optical and acoustic imaging, offering enhanced penetration depth for detecting optical-absorbing components in tissues.
With speed limitations imposed by laser pulse repetition rates, the potential role of computational methods is highlighted in accelerating PAM imaging.
We are proposing a novel and highly adaptable DiffPam algorithm that utilizes diffusion models for speeding up the PAM imaging process.
arXiv Detail & Related papers (2023-12-14T11:34:27Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - Fluctuation-based deconvolution in fluorescence microscopy using
plug-and-play denoisers [2.236663830879273]
spatial resolution of images of living samples obtained by fluorescence microscopes is physically limited due to the diffraction of visible light.
Several deconvolution and super-resolution techniques have been proposed to overcome this limitation.
arXiv Detail & Related papers (2023-03-20T15:43:52Z) - Image Denoising using Attention-Residual Convolutional Neural Networks [0.0]
We propose a new learning-based non-blind denoising technique named Attention Residual Convolutional Neural Network (ARCNN) and its extension to blind denoising named Flexible Attention Residual Convolutional Neural Network (FARCNN)
ARCNN achieved an overall average PSNR results of around 0.44dB and 0.96dB for Gaussian and Poisson denoising, respectively FARCNN presented very consistent results, even with slightly worsen performance compared to ARCNN.
arXiv Detail & Related papers (2021-01-19T16:37:57Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
We present a novel way to improve the quality of self-supervised denoising.
We assume the clean image to be the result of a convolution with a point spread function (PSF) and explicitly include this operation at the end of our neural network.
arXiv Detail & Related papers (2020-08-19T13:06:24Z) - Residual-driven Fuzzy C-Means Clustering for Image Segmentation [152.609322951917]
We elaborate on residual-driven Fuzzy C-Means (FCM) for image segmentation.
Built on this framework, we present a weighted $ell_2$-norm fidelity term by weighting mixed noise distribution.
The results demonstrate the superior effectiveness and efficiency of the proposed algorithm over existing FCM-related algorithms.
arXiv Detail & Related papers (2020-04-15T15:46:09Z) - Simultaneous Denoising and Dereverberation Using Deep Embedding Features [64.58693911070228]
We propose a joint training method for simultaneous speech denoising and dereverberation using deep embedding features.
At the denoising stage, the DC network is leveraged to extract noise-free deep embedding features.
At the dereverberation stage, instead of using the unsupervised K-means clustering algorithm, another neural network is utilized to estimate the anechoic speech.
arXiv Detail & Related papers (2020-04-06T06:34:01Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
We propose an attention-based deep residual network to learn a mapping from noisy HSI to the clean one.
Experimental results demonstrate that our proposed ADRN scheme outperforms the state-of-the-art methods both in quantitative and visual evaluations.
arXiv Detail & Related papers (2020-03-04T08:36:27Z) - When deep denoising meets iterative phase retrieval [5.639904484784126]
Conventional algorithms for retrieving the phase suffer when noise is present but display global convergence when given clean data.
Here, we combine iterative methods from phase retrieval with image statistics from deep denoisers, via regularization-by-denoising.
The resulting methods inherit the advantages of each approach and outperform other noise-robust phase retrieval algorithms.
arXiv Detail & Related papers (2020-03-03T21:00:45Z) - Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological
Reconstruction and Wavelet frames [146.63177174491082]
Fuzzy $C$-Means (FCM) algorithm incorporates a morphological reconstruction operation and a tight wavelet frame transform.
We present an improved FCM algorithm by imposing an $ell_0$ regularization term on the residual between the feature set and its ideal value.
Experimental results reported for synthetic, medical, and color images show that the proposed algorithm is effective and efficient, and outperforms other algorithms.
arXiv Detail & Related papers (2020-02-14T10:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.