論文の概要: Differentially Private Imaging via Latent Space Manipulation
- arxiv url: http://arxiv.org/abs/2103.05472v1
- Date: Mon, 8 Mar 2021 17:32:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-10 14:47:07.603201
- Title: Differentially Private Imaging via Latent Space Manipulation
- Title(参考訳): 潜時空間マニピュレーションによる微分プライベートイメージング
- Authors: Tao Li, Chris Clifton
- Abstract要約: 本稿では,無条件に訓練された生成モデルの潜在空間を操作することにより,画像の難読化に新たなアプローチを提案する。
これは、イメージプライバシに対する最初のアプローチで、$varepsilon$-differential privacy emphを満たす。
- 参考スコア(独自算出の注目度): 5.446368808660037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is growing concern about image privacy due to the popularity of social
media and photo devices, along with increasing use of face recognition systems.
However, established image de-identification techniques are either too subject
to re-identification, produce photos that are insufficiently realistic, or
both. To tackle this, we present a novel approach for image obfuscation by
manipulating latent spaces of an unconditionally trained generative model that
is able to synthesize photo-realistic facial images of high resolution. This
manipulation is done in a way that satisfies the formal privacy standard of
local differential privacy. To our knowledge, this is the first approach to
image privacy that satisfies $\varepsilon$-differential privacy \emph{for the
person.}
- Abstract(参考訳): ソーシャルメディアや写真デバイスの人気と顔認識システムの利用の増加により、画像のプライバシーに関する懸念が高まっています。
しかし、確立された画像識別技術は再同定の対象になりすぎるか、不充分に現実的な写真を生成するか、両方になる。
そこで本研究では,無条件に訓練された生成モデルの潜在空間を操作し,高分解能のフォトリアリスティックな顔画像を合成する新しい手法を提案する。
この操作は、ローカルな差分プライバシーの正式なプライバシー標準を満たす方法で行われます。
私たちの知る限り、これは$\varepsilon$-difference privacy \emph{for the person.}を満たす最初の画像プライバシーのアプローチです。
関連論文リスト
- Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
この脆弱性を解決するために,ハードウェアレベルの顔識別手法を提案する。
また、プライバシ保存画像、フェイスヒートマップ、およびパブリックデータセットからの参照顔イメージを入力として、新しい顔を生成する匿名化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-31T19:28:04Z) - Privacy-Preserving Face Recognition Using Trainable Feature Subtraction [40.47645421424354]
顔認識はプライバシーの懸念を増している。
本稿では,視覚障害と回復障害に対する顔画像保護について検討する。
我々は,この手法を新たなプライバシ保護顔認識手法であるMinusFaceに精錬する。
論文 参考訳(メタデータ) (2024-03-19T05:27:52Z) - PrivacyGAN: robust generative image privacy [0.0]
画像のユーザビリティを維持しながらプライバシを保護する新しいアプローチであるPrivacyGANを導入する。
Fawkesからインスピレーションを得たこの手法では、埋め込み空間内の元の画像をデコイ画像にシフトさせる。
本手法は未知の埋め込み転送シナリオにおいても有効であることを示す。
論文 参考訳(メタデータ) (2023-10-19T08:56:09Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - CLIP2Protect: Protecting Facial Privacy using Text-Guided Makeup via
Adversarial Latent Search [10.16904417057085]
ディープラーニングベースの顔認識システムは、デジタル世界のユーザを無許可で追跡することができる。
既存のプライバシーを強化する方法は、ユーザー体験を損なうことなく、顔のプライバシーを保護することができる自然主義的なイメージを生成するのに失敗する。
本稿では,事前学習された生成モデルの低次元多様体における逆潜時符号の発見に依存する,顔のプライバシー保護のための新しい2段階のアプローチを提案する。
論文 参考訳(メタデータ) (2023-06-16T17:58:15Z) - Privacy-Preserving Face Recognition with Learnable Privacy Budgets in
Frequency Domain [77.8858706250075]
本稿では,周波数領域における差分プライバシーを用いたプライバシ保護顔認証手法を提案する。
本手法はいくつかの古典的顔認証テストセットで非常によく機能する。
論文 参考訳(メタデータ) (2022-07-15T07:15:36Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
我々は、新しいタイプのカスタマイズクロークに基づく技術の観点から、顔のプライバシ保護について検討する。
本研究では,個人固有の(クラスワイドな)ユニバーサルマスクを生成するために,1人1マスク(OPOM)という新しい手法を提案する。
提案手法の有効性を,共通データセットと有名データセットの両方で評価した。
論文 参考訳(メタデータ) (2022-05-24T11:29:37Z) - FoggySight: A Scheme for Facial Lookup Privacy [8.19666118455293]
ソーシャルメディアにアップロードされる前に、相手の事例文献から学んだ教訓を適用して、プライバシー保護の方法で顔写真を修正するソリューションを提案し、評価します。
f foggysightの核となる機能はコミュニティ保護戦略であり、ユーザがプライバシーの保護者として行動することで、敵の機械学習アルゴリズムによって生成されたデコイ写真をアップロードする。
我々は、このスキームのさまざまな設定を調査し、未知の内部構造を持つ顔認識サービスを含む、顔のプライバシー保護を可能にすることを見出します。
論文 参考訳(メタデータ) (2020-12-15T19:57:18Z) - InfoScrub: Towards Attribute Privacy by Targeted Obfuscation [77.49428268918703]
視覚データに流出した個人情報を個人が制限できる技術について検討する。
我々はこの問題を新しい画像難読化フレームワークで解決する。
提案手法では,元の入力画像に忠実な難読化画像を生成するとともに,非難読化画像に対して6.2$times$(または0.85bits)の不確実性を増大させる。
論文 参考訳(メタデータ) (2020-05-20T19:48:04Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。