Engineered platforms for topological superconductivity and Majorana zero
modes
- URL: http://arxiv.org/abs/2103.05548v1
- Date: Tue, 9 Mar 2021 16:48:55 GMT
- Title: Engineered platforms for topological superconductivity and Majorana zero
modes
- Authors: Karsten Flensberg and Felix von Oppen and Ady Stern
- Abstract summary: Majorana-based platform attempts to realize qubits which store quantum information in a topologically-protected manner.
This paper reviews the basic physical principles on which these approaches are based, the material systems that are being developed, and the current state of the field.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Among the major approaches that are being pursued for realizing quantum bits,
the Majorana-based platform has been the most recent to be launched. It
attempts to realize qubits which store quantum information in a
topologically-protected manner. The quantum information is protected by its
nonlocal storage in localized and well-separated Majorana zero modes, and
manipulated by exploiting their nonabelian quantum exchange properties.
Realizing these topological qubits is experimentally challenging, requiring
superconductivity, helical electrons (created by spin-orbit coupling) and
breaking of time reversal symmetry to all cooperate in an uncomfortable
alliance. Over the past decade, several candidate material systems for
realizing Majorana-based topological qubits have been explored, and there is
accumulating, though still debated, evidence that zero modes are indeed being
realized. This paper reviews the basic physical principles on which these
approaches are based, the material systems that are being developed, and the
current state of the field. We highlight both the progress made and the
challenges that still need to be overcome.
Related papers
- Persisting quantum effects in the anisotropic Rabi model at thermal
equilibrium [0.0]
We study the long-lived quantum correlations and nonclassical states generated in the anisotropic Rabi model.
We demonstrate a stark distinction between virtual excitations produced beyond the strong coupling regime and the quantumness quantifiers once the light-matter interaction has been switched off.
arXiv Detail & Related papers (2023-09-05T10:59:32Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Braiding-based quantum control of a Majorana qubit built from quantum
dots [0.0]
We describe the dynamics of a Majorana qubit built from quantum dots controlled by time-dependent gate voltages.
We provide quantitative guidelines to suppress both diabatic errors and disorder-induced qubit dephasing.
Our simulations predict realistic features that are expected to be seen in future braiding experiments with Majorana zero modes and other topological qubit architectures.
arXiv Detail & Related papers (2023-05-15T09:08:37Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
Indistinguishability of particles is a fundamental principle of quantum mechanics.
braiding of non-Abelian anyons causes rotations in a space of degenerate wavefunctions.
We experimentally verify the fusion rules of the anyons and braid them to realize their statistics.
arXiv Detail & Related papers (2022-10-19T02:28:44Z) - Majorana nanowires for topological quantum computation [0.0]
Majorana bound states are quasiparticle excitations localized at the boundaries of a nontrivial superconductor.
They are robust against local perturbations and, in an ideal environment, free from decoherence.
This tutorial may serve as a pedagogical and relatively self-contained introduction for graduate students and researchers new to the field.
arXiv Detail & Related papers (2022-06-29T18:00:04Z) - Observing and braiding topological Majorana modes on programmable
quantum simulators [0.0]
A collective excitation, known as a topological Majorana mode, is naturally stable against perturbations.
This work shows that long-sought quantum phenomena can be realized by anyone in cloud-run quantum simulations.
arXiv Detail & Related papers (2022-03-28T20:41:27Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.