Persisting quantum effects in the anisotropic Rabi model at thermal
equilibrium
- URL: http://arxiv.org/abs/2309.02123v1
- Date: Tue, 5 Sep 2023 10:59:32 GMT
- Title: Persisting quantum effects in the anisotropic Rabi model at thermal
equilibrium
- Authors: He-Guang Xu, V. Montenegro, Gao Xianlong, Jiasen Jin and G. D. de
Moraes Neto
- Abstract summary: We study the long-lived quantum correlations and nonclassical states generated in the anisotropic Rabi model.
We demonstrate a stark distinction between virtual excitations produced beyond the strong coupling regime and the quantumness quantifiers once the light-matter interaction has been switched off.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum correlations and nonclassical states are at the heart of emerging
quantum technologies. Efforts to produce long-lived states of such quantum
resources are a subject of tireless pursuit. Among several platforms useful for
quantum technology, the mature quantum system of light-matter interactions
offers unprecedented advantages due to current on-chip nanofabrication,
efficient quantum control of its constituents, and its wide range of
operational regimes. Recently, a continuous transition between the
Jaynes-Cummings model and the Rabi model has been proposed by exploiting
anisotropies in their light-matter interactions, known as the anisotropic
quantum Rabi model. In this work, we study the long-lived quantum correlations
and nonclassical states generated in the anisotropic Rabi model and how these
indeed persist even at thermal equilibrium. To achieve this, we thoroughly
analyze several quantumness quantifiers, where the long-lived quantum state is
obtained from a dressed master equation that is valid for all coupling regimes
and with the steady state ensured to be the canonical Gibbs state. Furthermore,
we demonstrate a stark distinction between virtual excitations produced beyond
the strong coupling regime and the quantumness quantifiers once the
light-matter interaction has been switched off. This raises the key question
about the nature of the equilibrium quantum features generated in the
anisotropic quantum Rabi model and paves the way for future experimental
investigations, without the need for challenging ground-state cooling.
Related papers
- A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Dynamics of quantum resources in regular and Majorana fermion systems [0.0]
We study the dynamics of quantum resources for two solid-state fermionic quantum devices.
Our results illustrate the use of quantum information-theoretic measures to characterize the role of quantum resources in fermion systems.
arXiv Detail & Related papers (2021-08-02T23:10:29Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Quantum Correlations beyond Entanglement and Discord [0.0]
We experimentally realize a form of quantum correlation that exists even in the absence of entanglement and discord.
We implement a robust kind of nonclassical photon-photon correlated state with useful applications in quantum information processing.
arXiv Detail & Related papers (2020-10-07T15:52:20Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Detecting dynamical quantum phase transition via out-of-time-order
correlations in a solid-state quantum simulator [12.059058714600607]
We develop and experimentally demonstrate that out-of-time-order correlators can be used to detect nonoequilibrium phase transitions in the transverse field Ising model.
Further applications of this protocol could enable studies other of exotic phenomena such as many body localization, and tests of the holographic duality between quantum and gravitational systems.
arXiv Detail & Related papers (2020-01-17T14:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.