論文の概要: Inverse Reinforcement Learning of Autonomous Behaviors Encoded as
Weighted Finite Automata
- arxiv url: http://arxiv.org/abs/2103.05895v1
- Date: Wed, 10 Mar 2021 06:42:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-12 08:18:34.918159
- Title: Inverse Reinforcement Learning of Autonomous Behaviors Encoded as
Weighted Finite Automata
- Title(参考訳): 重み付き有限オートマトンとしてコードされる自律行動の逆強化学習
- Authors: Tianyu Wang, Nikolay Atanasov
- Abstract要約: 本稿では,論理タスク仕様とコスト関数を実演から学習する手法を提案する。
本稿では,タスクの未知論理構造を近似した重み付き有限オートマトン(WFA)の抽出にスペクトル学習手法を用いる。
高レベルタスクガイダンスのためのWFAと低レベル制御のためのラベル付きマルコフ決定プロセス(L-MDP)との間にある製品を定義し、実証者の行動にマッチするコスト関数を最適化する。
- 参考スコア(独自算出の注目度): 18.972270182221262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a method for learning logical task specifications and
cost functions from demonstrations. Linear temporal logic (LTL) formulas are
widely used to express complex objectives and constraints for autonomous
systems. Yet, such specifications may be challenging to construct by hand.
Instead, we consider demonstrated task executions, whose temporal logic
structure and transition costs need to be inferred by an autonomous agent. We
employ a spectral learning approach to extract a weighted finite automaton
(WFA), approximating the unknown logic structure of the task. Thereafter, we
define a product between the WFA for high-level task guidance and a Labeled
Markov decision process (L-MDP) for low-level control and optimize a cost
function that matches the demonstrator's behavior. We demonstrate that our
method is capable of generalizing the execution of the inferred task
specification to new environment configurations.
- Abstract(参考訳): 本稿では,論理タスク仕様とコスト関数を実演から学習する手法を提案する。
線形時間論理(LTL)公式は、自律システムの複雑な目的や制約を表現するために広く用いられている。
しかし、このような仕様は手作業で構築するのは困難かもしれない。
その代わりに、時間的論理構造と遷移コストを自律エージェントによって推測する必要があるタスクの実行を実証する。
本稿では,タスクの未知論理構造を近似した重み付き有限オートマトン(WFA)の抽出にスペクトル学習手法を用いる。
その後、ハイレベルタスクガイダンスのためのWFAと低レベル制御のためのラベル付きマルコフ決定プロセス(L-MDP)の製品を定義し、実証者の行動に合わせたコスト関数を最適化する。
本手法は、推論されたタスク仕様の実行を新しい環境構成に一般化できることを実証する。
関連論文リスト
- Directed Exploration in Reinforcement Learning from Linear Temporal Logic [59.707408697394534]
リニア時間論理(LTL)は強化学習におけるタスク仕様のための強力な言語である。
合成された報酬信号は基本的に疎結合であり,探索が困難であることを示す。
我々は、仕様をさらに活用し、それに対応するリミット決定性B"uchi Automaton(LDBA)をマルコフ報酬プロセスとしてキャストすることで、よりよい探索を実現することができることを示す。
論文 参考訳(メタデータ) (2024-08-18T14:25:44Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
本稿では,タスク自動化の体系的アプローチである計算管理を紹介する。
この記事では、ワークフロー内でAIを実装するプロセスを開始するための、ステップバイステップの手順を3つ紹介する。
論文 参考訳(メタデータ) (2024-02-07T01:45:14Z) - Logical Specifications-guided Dynamic Task Sampling for Reinforcement Learning Agents [9.529492371336286]
強化学習(Reinforcement Learning、RL)は、人工エージェントが多様な振る舞いを学習できるようにするために大きな進歩を遂げてきた。
論理仕様誘導動的タスクサンプリング(LSTS)と呼ばれる新しい手法を提案する。
LSTSは、エージェントを初期状態から目標状態へ誘導するRLポリシーのセットを、ハイレベルなタスク仕様に基づいて学習する。
論文 参考訳(メタデータ) (2024-02-06T04:00:21Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - Towards Unified Token Learning for Vision-Language Tracking [65.96561538356315]
本稿では,VL追跡をトークン生成タスクとして用いた「textbfMMTrack」という,視覚言語(VL)追跡パイプラインを提案する。
提案フレームワークは,言語記述と境界ボックスを離散トークン列にシリアライズする。
この新しい設計パラダイムでは、全てのトークンクエリが望ましいターゲットを認識し、ターゲットの空間座標を直接予測するために必要となる。
論文 参考訳(メタデータ) (2023-08-27T13:17:34Z) - Automaton-Guided Curriculum Generation for Reinforcement Learning Agents [14.20447398253189]
Automaton-Guided Curriculum Learning (AGCL) は、DAG(Directed Acyclic Graphs)の形式で、対象タスクのためのカリキュラムを自動生成する新しい方法である。
AGCL は決定論的有限オートマトン (DFA) の形式で仕様を符号化し、DFA とオブジェクト指向 MDP 表現を使ってカリキュラムを DAG として生成する。
グリッドワールドと物理に基づくシミュレーションロボティクス領域の実験では、AGCLが生み出すカリキュラムが時間と閾値のパフォーマンスを向上させることが示されている。
論文 参考訳(メタデータ) (2023-04-11T15:14:31Z) - Accelerated Reinforcement Learning for Temporal Logic Control Objectives [10.216293366496688]
本稿では,未知マルコフ決定過程(MDP)をモデル化した移動ロボットの学習制御ポリシーの問題に対処する。
本稿では,制御ポリシを関連手法よりもはるかに高速に学習可能な制御対象に対するモデルベース強化学習(RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-09T17:09:51Z) - Multi-Agent Reinforcement Learning with Temporal Logic Specifications [65.79056365594654]
本研究では,時間論理仕様を満たすための学習課題を,未知の環境下でエージェントのグループで検討する。
我々は、時間論理仕様のための最初のマルチエージェント強化学習手法を開発した。
主アルゴリズムの正確性と収束性を保証する。
論文 参考訳(メタデータ) (2021-02-01T01:13:03Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
このアルゴリズムは、トレースが仕様を最大確率で満たす制御ポリシーを合成することが保証される。
論文 参考訳(メタデータ) (2019-02-02T20:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。