論文の概要: A critical reappraisal of predicting suicidal ideation using fMRI
- arxiv url: http://arxiv.org/abs/2103.06114v1
- Date: Wed, 10 Mar 2021 15:08:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-12 11:05:45.617541
- Title: A critical reappraisal of predicting suicidal ideation using fMRI
- Title(参考訳): fMRIを用いた自殺予測の批判的再評価
- Authors: Timothy Verstynen, Konrad Kording
- Abstract要約: 本報告では,著者が用いた手法の再評価を行い,同じデータセットの再解析を行い,著者の精度を疑問視する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For many psychiatric disorders, neuroimaging offers a potential for
revolutionizing diagnosis and treatment by providing access to preverbal mental
processes. In their study "Machine learning of neural representations of
suicide and emotion concepts identifies suicidal youth."1, Just and colleagues
report that a Naive Bayes classifier, trained on voxelwise fMRI responses in
human participants during the presentation of words and concepts related to
mortality, can predict whether an individual had reported having suicidal
ideations with a classification accuracy of 91%. Here we report a reappraisal
of the methods employed by the authors, including re-analysis of the same data
set, that calls into question the accuracy of the authors findings.
- Abstract(参考訳): 多くの精神疾患では、神経イメージングは前言的な精神プロセスへのアクセスを提供することで診断と治療に革命をもたらす可能性があります。
彼らの研究「自殺と感情の概念の神経表現の機械学習は自殺の若者を識別します。
「1、just、そして同僚は、死亡に関連する言葉や概念の提示中に、ヒト参加者のボクセルワイズfmri応答を訓練したナイーブ・ベイズ分類器は、個人が91%の分類精度で自殺イデオロギーを報告したかどうかを予測することができる。
本稿では,著者が用いた手法の再評価を行い,同じデータセットの再解析を行い,著者の精度を疑問視する。
関連論文リスト
- An Exploratory Deep Learning Approach for Predicting Subsequent Suicidal Acts in Chinese Psychological Support Hotlines [13.59130559079134]
自殺リスク評価のためのスケールベースの予測手法の精度は、オペレーターの専門性によって大きく異なる可能性がある。
本研究は,中国における自殺リスクを予測するために,長期音声データにディープラーニングを適用した最初の事例である。
論文 参考訳(メタデータ) (2024-08-29T11:51:41Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
大規模言語モデル(LLM)を用いて、非構造的心理面接を、様々な精神科領域と人格領域にまたがる構造化された質問票に変換する。
得られた回答は、うつ病の標準化された精神医学的指標(PHQ-8)とPTSD(PCL-C)の予測に使用される特徴として符号化される。
論文 参考訳(メタデータ) (2024-06-09T09:03:11Z) - Non-Invasive Suicide Risk Prediction Through Speech Analysis [74.8396086718266]
自動自殺リスク評価のための非侵襲的音声ベースアプローチを提案する。
我々は、wav2vec、解釈可能な音声・音響特徴、深層学習に基づくスペクトル表現の3つの特徴セットを抽出する。
我々の最も効果的な音声モデルは、6.6.2,%$のバランスの取れた精度を達成する。
論文 参考訳(メタデータ) (2024-04-18T12:33:57Z) - Conceptualizing Suicidal Behavior: Utilizing Explanations of Predicted
Outcomes to Analyze Longitudinal Social Media Data [2.76101452577748]
新型コロナウイルスのパンデミックは世界中でメンタルヘルスの危機をエスカレートしている。
自殺は、恥、虐待、放棄、うつ病のような精神状態などの社会的要因によって引き起こされる。
これらの状況が発展するにつれて、自殺的思考の兆候がソーシャルメディアの相互作用に現れる可能性がある。
論文 参考訳(メタデータ) (2023-12-13T17:15:12Z) - Leveraging Contextual Relatedness to Identify Suicide Documentation in
Clinical Notes through Zero Shot Learning [8.57098973963918]
本稿では,ゼロショット学習を通じて,このデータ空間の問題に対処することにより,臨床ノートの自殺を識別する新しい手法について述べる。
深層ニューラルネットワークは、トレーニング文書の内容を意味空間にマッピングすることで訓練された。
この手法は0.90の確率閾値を適用し、自殺を記録したICD 10 CMコードと関係のないメモを94%の精度で特定した。
論文 参考訳(メタデータ) (2023-01-09T17:26:07Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
我々はNeuroExplainerと呼ばれる説明可能な幾何学的深層ネットワークを提案する。
NeuroExplainerは、早産に伴う幼児の皮質発達パターンの解明に使用される。
論文 参考訳(メタデータ) (2023-01-01T12:48:12Z) - fMRI Neurofeedback Learning Patterns are Predictive of Personal and
Clinical Traits [62.997667081978825]
機能的MRI(fMRI)による自律神経運動課題における学習経過の個人的シグネチャを得る。
署名は、第1セッションで同様のfMRI由来の脳の状態が与えられた後、第2セッションで扁桃体の活動を予測することに基づいている。
論文 参考訳(メタデータ) (2021-12-21T06:52:48Z) - An ensemble deep learning technique for detecting suicidal ideation from
posts in social media platforms [0.0]
本稿ではLSTM-Attention-CNN複合モデルを提案する。
提案されたモデルは90.3%の精度、F1スコア92.6%の精度を示した。
論文 参考訳(メタデータ) (2021-12-17T15:34:03Z) - Learning Personal Representations from fMRIby Predicting Neurofeedback
Performance [52.77024349608834]
機能的MRI(fMRI)によって導かれる自己神経変調タスクを行う個人のための個人表現を学習するためのディープニューラルネットワーク手法を提案する。
この表現は、直近のfMRIフレームが与えられた次のfMRIフレームにおける扁桃体活動を予測する自己教師型リカレントニューラルネットワークによって学習され、学習された個々の表現に条件付けされる。
論文 参考訳(メタデータ) (2021-12-06T10:16:54Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。