論文の概要: Face Images as Jigsaw Puzzles: Compositional Perception of Human Faces
for Machines Using Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2103.06331v1
- Date: Wed, 10 Mar 2021 20:25:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-13 10:58:41.549428
- Title: Face Images as Jigsaw Puzzles: Compositional Perception of Human Faces
for Machines Using Generative Adversarial Networks
- Title(参考訳): Jigsawのパズルとしての顔画像:生成的対向ネットワークを用いた機械の人間の顔の合成知覚
- Authors: Mahla Abdolahnejad and Peter Xiaoping Liu
- Abstract要約: 本稿では,より小さな部品からなる顔画像の分布を生成的敵ネットワークで学習するための新しい手法を提案する。
このモデルでは,部品を組み立てることで,現実的な高品質な顔画像が作成可能であることを実証する。
- 参考スコア(独自算出の注目度): 5.3683131602833525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An important goal in human-robot-interaction (HRI) is for machines to achieve
a close to human level of face perception. One of the important differences
between machine learning and human intelligence is the lack of
compositionality. This paper introduces a new scheme to enable generative
adversarial networks to learn the distribution of face images composed of
smaller parts. This results in a more flexible machine face perception and
easier generalization to outside training examples. We demonstrate that this
model is able to produce realistic high-quality face images by generating and
piecing together the parts. Additionally, we demonstrate that this model learns
the relations between the facial parts and their distributions. Therefore, the
specific facial parts are interchangeable between generated face images.
- Abstract(参考訳): HRI(Human-Robot-Interaction)の重要な目標は、機械が人間の顔認識に近いレベルを達成することです。
機械学習と人間の知能の重要な違いの1つは、構成性の欠如です。
本稿では,より小さな部品からなる顔画像の分布を生成的敵ネットワークで学習するための新しい手法を提案する。
これにより、より柔軟なマシンフェイス認識と、外部トレーニング例への一般化が容易になる。
このモデルでは,部品を組み立てることで,現実的な高品質な顔画像が作成可能であることを実証する。
さらに,このモデルが顔の部位と分布の関係を学習することを示した。
したがって、特定の顔の部分は生成された顔画像間で交換可能である。
関連論文リスト
- Single Image, Any Face: Generalisable 3D Face Generation [59.9369171926757]
我々は,制約のない単一画像入力を伴う3次元顔を生成する新しいモデルGen3D-Faceを提案する。
私たちの知る限りでは、これは1枚の画像からフォトリアリスティックな3D顔アバターを作るための最初の試みであり、ベンチマークである。
論文 参考訳(メタデータ) (2024-09-25T14:56:37Z) - GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations [54.94362657501809]
マルチビュー画像から高ダイナミックで変形可能な人間の頭部アバターをリアルタイムで生成する手法を提案する。
本手法のコアとなるのは,顔表情と頭部運動の複雑なダイナミクスを捉えることができる頭部モデルの階層的表現である。
我々は、この粗い顔アバターモデルを、エンドツーエンドのフレームワークで学習可能なパラメータとして頭部ポーズとともに訓練する。
論文 参考訳(メタデータ) (2024-09-18T13:05:43Z) - A Generalist FaceX via Learning Unified Facial Representation [77.74407008931486]
FaceXは、多様な顔タスクを同時に処理できる新しい顔ジェネラリストモデルである。
汎用的なFaceXは、一般的な顔編集タスクの精巧なタスク特化モデルと比較して、競争性能が向上する。
論文 参考訳(メタデータ) (2023-12-31T17:41:48Z) - FaceChain: A Playground for Human-centric Artificial Intelligence
Generated Content [36.48960592782015]
FaceChainは、パーソナライズされたポートレート生成フレームワークで、一連のカスタマイズされた画像生成モデルと、顔に関連する知覚理解モデルの豊富なセットを組み合わせる。
我々は、複数のSOTAフェイスモデルを生成手順に注入し、従来のソリューションと比較して、より効率的なラベルタグ付け、データ処理、モデル後処理を実現する。
FaceChainをベースとして、仮想トライオンや2Dトーキングヘッドなど、その価値をよりよく示すための、より広いグラウンドを構築するためのいくつかのアプリケーションも開発しています。
論文 参考訳(メタデータ) (2023-08-28T02:20:44Z) - Kinship Representation Learning with Face Componential Relation [19.175823975322356]
Kinship Recognitionは、2つの顔画像の被験者が近親者か非近親者かを判定することを目的としている。
従来手法では,顔画像間の空間的相関を考慮せずに設計に重点を置いていた。
本稿では,画像間の顔成分間の関係を相互認識機構を用いて学習する顔成分関係ネットワークを提案する。
提案されたFaCoRNetは、最大の公的な親族認識FIWベンチマークにおいて、最先端の手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2023-04-10T12:37:26Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
我々は、ID混在(IM)とドメイン混在(DM)を併用したSynFaceを考案し、パフォーマンスギャップを緩和する。
また、合成顔画像の系統的実験分析を行い、合成データを顔認識に効果的に活用する方法についての知見を提供する。
論文 参考訳(メタデータ) (2021-08-18T03:41:54Z) - One-shot Face Reenactment Using Appearance Adaptive Normalization [30.615671641713945]
本稿では,一発顔再現のための新しい生成的対向ネットワークを提案する。
1枚の顔画像を別のポーズ・アンド・エクスプレッションにアニメーションし、元の外観を保ちます。
論文 参考訳(メタデータ) (2021-02-08T03:36:30Z) - InterFaceGAN: Interpreting the Disentangled Face Representation Learned
by GANs [73.27299786083424]
我々は、最先端のGANモデルによって学習された不整合顔表現を解釈するInterFaceGANというフレームワークを提案する。
まず、GANは潜在空間の線型部分空間で様々な意味学を学ぶ。
次に、異なる意味論間の相関関係について詳細な研究を行い、部分空間射影を通してそれらをよりよく解離させる。
論文 参考訳(メタデータ) (2020-05-18T18:01:22Z) - Salient Facial Features from Humans and Deep Neural Networks [2.5211876507510724]
顔の分類に人間や畳み込みニューラルネットワーク(ConvNet)が利用する特徴について検討する。
我々は、特定の個人を特定する際に最もConvNetの出力に影響を与える顔の特徴を可視化するために、ガイドバックプロパゲーション(GB)を使用する。
論文 参考訳(メタデータ) (2020-03-08T22:41:04Z) - DotFAN: A Domain-transferred Face Augmentation Network for Pose and
Illumination Invariant Face Recognition [94.96686189033869]
本稿では,3次元モデルを用いたドメイン転送型顔強調ネットワーク(DotFAN)を提案する。
DotFANは、他のドメインから収集された既存のリッチフェイスデータセットから抽出された知識に基づいて、入力顔の一連の変種を生成することができる。
実験によると、DotFANは、クラス内の多様性を改善するために、小さな顔データセットを増やすのに有益である。
論文 参考訳(メタデータ) (2020-02-23T08:16:34Z) - Domain Embedded Multi-model Generative Adversarial Networks for
Image-based Face Inpainting [44.598234654270584]
そこで本研究では,大規模刈り取り領域で顔画像の塗布を行うためのドメイン組込み多モデル生成逆数モデルを提案する。
CelebAとCelebA-HQの両方の顔データセットに対する実験により、提案手法が最先端の性能を達成したことを示す。
論文 参考訳(メタデータ) (2020-02-05T17:36:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。