Multi-Objective Reinforcement Learning based Multi-Microgrid System
Optimisation Problem
- URL: http://arxiv.org/abs/2103.06380v1
- Date: Wed, 10 Mar 2021 23:01:22 GMT
- Title: Multi-Objective Reinforcement Learning based Multi-Microgrid System
Optimisation Problem
- Authors: Jiangjiao Xu, Ke Li, and Mohammad Abusara
- Abstract summary: Microgrids with energy storage systems and distributed renewable energy sources play a crucial role in reducing the consumption from traditional power sources and the emission of $CO$.
Connecting multi microgrid to a distribution power grid can facilitate a more robust and reliable operation to increase the security and privacy of the system.
The proposed model consists of three layers, smart grid layer, independent system operator (ISO) layer and power grid layer.
- Score: 4.338938227238059
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Microgrids with energy storage systems and distributed renewable energy
sources play a crucial role in reducing the consumption from traditional power
sources and the emission of $CO_2$. Connecting multi microgrid to a
distribution power grid can facilitate a more robust and reliable operation to
increase the security and privacy of the system. The proposed model consists of
three layers, smart grid layer, independent system operator (ISO) layer and
power grid layer. Each layer aims to maximise its benefit. To achieve these
objectives, an intelligent multi-microgrid energy management method is proposed
based on the multi-objective reinforcement learning (MORL) techniques, leading
to a Pareto optimal set. A non-dominated solution is selected to implement a
fair design in order not to favour any particular participant. The simulation
results demonstrate the performance of the MORL and verify the viability of the
proposed approach.
Related papers
- Non-Intrusive Electric Load Monitoring Approach Based on Current Feature
Visualization for Smart Energy Management [51.89904044860731]
We employ computer vision techniques of AI to design a non-invasive load monitoring method for smart electric energy management.
We propose to recognize all electric loads from color feature images using a U-shape deep neural network with multi-scale feature extraction and attention mechanism.
arXiv Detail & Related papers (2023-08-08T04:52:19Z) - Multi-Microgrid Collaborative Optimization Scheduling Using an Improved
Multi-Agent Soft Actor-Critic Algorithm [8.461537684562776]
A multi-microgrid (MMG) system consists of multiple renewable energy microgrids belonging to different operating entities.
This paper proposes a MMG collaborative optimization scheduling model based on a multi-agent centralized training distributed execution framework.
arXiv Detail & Related papers (2023-04-01T22:44:52Z) - Energy Management of Multi-mode Plug-in Hybrid Electric Vehicle using
Multi-agent Deep Reinforcement Learning [6.519522573636577]
Multi-mode plug-in hybrid electric vehicle (PHEV) technology is one of the pathways making contributions to decarbonization.
This paper studies a multi-agent deep reinforcement learning (MADRL) control method for energy management of the multi-mode PHEV.
Using the unified DDPG settings and a relevance ratio of 0.2, the proposed MADRL system can save up to 4% energy compared to the single-agent learning system and up to 23.54% energy compared to the conventional rule-based system.
arXiv Detail & Related papers (2023-03-16T21:31:55Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Deep Reinforcement Learning Microgrid Optimization Strategy Considering
Priority Flexible Demand Side [6.129841305145217]
A microgrid is mainly faced with the problems of small-scale volatility, uncertainty, intermittency and demand-side uncertainty of DERs.
The traditional microgrid has a single form and cannot meet the flexible energy dispatch between the complex demand side and the microgrid.
This paper considers the response priority of each unit component of TCLs and ESSs on the basis of the overall environment operation of the microgrid.
arXiv Detail & Related papers (2022-11-11T01:43:10Z) - Multi-agent Deep Reinforcement Learning for Charge-sustaining Control of
Multi-mode Hybrid Vehicles [9.416703139663705]
Transportation electrification requires an increasing number of electric components on vehicles.
This paper focuses on the online optimization of energy management strategy for a multi-mode hybrid electric vehicle.
A new collaborative cyber-physical learning with multi-agents is proposed.
arXiv Detail & Related papers (2022-09-06T16:40:55Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
This paper investigates a master unmanned aerial vehicle (MUAV)-powered Internet of Things (IoT) network.
We propose using a rechargeable auxiliary UAV (AUAV) equipped with an intelligent reflecting surface (IRS) to enhance the communication signals from the MUAV.
Under the proposed model, we investigate the optimal collaboration strategy of these energy-limited UAVs to maximize the accumulated throughput of the IoT network.
arXiv Detail & Related papers (2021-12-20T15:45:28Z) - A Multi-Agent Deep Reinforcement Learning Approach for a Distributed
Energy Marketplace in Smart Grids [58.666456917115056]
This paper presents a Reinforcement Learning based energy market for a prosumer dominated microgrid.
The proposed market model facilitates a real-time and demanddependent dynamic pricing environment, which reduces grid costs and improves the economic benefits for prosumers.
arXiv Detail & Related papers (2020-09-23T02:17:51Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.