Multi-Microgrid Collaborative Optimization Scheduling Using an Improved
Multi-Agent Soft Actor-Critic Algorithm
- URL: http://arxiv.org/abs/2304.01223v1
- Date: Sat, 1 Apr 2023 22:44:52 GMT
- Title: Multi-Microgrid Collaborative Optimization Scheduling Using an Improved
Multi-Agent Soft Actor-Critic Algorithm
- Authors: Jiankai Gao, Yang Li, Bin Wang, Haibo Wu
- Abstract summary: A multi-microgrid (MMG) system consists of multiple renewable energy microgrids belonging to different operating entities.
This paper proposes a MMG collaborative optimization scheduling model based on a multi-agent centralized training distributed execution framework.
- Score: 8.461537684562776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The implementation of a multi-microgrid (MMG) system with multiple renewable
energy sources enables the facilitation of electricity trading. To tackle the
energy management problem of a MMG system, which consists of multiple renewable
energy microgrids belonging to different operating entities, this paper
proposes a MMG collaborative optimization scheduling model based on a
multi-agent centralized training distributed execution framework. To enhance
the generalization ability of dealing with various uncertainties, we also
propose an improved multi-agent soft actor-critic (MASAC) algorithm, which
facilitates en-ergy transactions between multi-agents in MMG, and employs
automated machine learning (AutoML) to optimize the MASAC hyperparameters to
further improve the generalization of deep reinforcement learning (DRL). The
test results demonstrate that the proposed method successfully achieves power
complementarity between different entities, and reduces the MMG system
operating cost. Additionally, the proposal significantly outperforms other
state-of-the-art reinforcement learning algorithms with better economy and
higher calculation efficiency.
Related papers
- Machine Learning Infused Distributed Optimization for Coordinating Virtual Power Plant Assets [0.0]
This paper presents a novel machine learning-assisted distributed optimization to coordinate VPP assets.
Our method, named LOOP-MAC, adopts a multi-agent coordination perspective where each VPP agent manages multiple DERs.
Our results highlight the advantages of LOOP-MAC, showcasing accelerated solution times per iteration and significantly reduced convergence times.
arXiv Detail & Related papers (2023-10-27T04:11:13Z) - Effective Multi-Agent Deep Reinforcement Learning Control with Relative
Entropy Regularization [6.441951360534903]
Multi-Agent Continuous Dynamic Policy Gradient (MACDPP) was proposed to tackle the issues of limited capability and sample efficiency in various scenarios controlled by multiple agents.
It alleviates the inconsistency of multiple agents' policy updates by introducing the relative entropy regularization to the Training with Decentralized Execution (CTDE) framework with the Actor-Critic (AC) structure.
arXiv Detail & Related papers (2023-09-26T07:38:19Z) - Collaborative Optimization of Multi-microgrids System with Shared Energy
Storage Based on Multi-agent Stochastic Game and Reinforcement Learning [8.511196076836592]
The proposed MMG system framework can reduce energy fluctuations in the main grid by 1746.5kW in 24 hours and achieve a cost reduction of 16.21% in the test.
The superiority of the proposed algorithms is verified through their fast convergence speed and excellent optimization performance.
arXiv Detail & Related papers (2023-06-19T07:55:41Z) - Multi-Agent Automated Machine Learning [54.14038920246645]
We propose multi-agent automated machine learning (MA2ML) to handle joint optimization of modules in automated machine learning (AutoML)
MA2ML explicitly assigns credit to each agent according to its marginal contribution to enhance cooperation among modules, and incorporates off-policy learning to improve search efficiency.
Experiments show that MA2ML yields the state-of-the-art top-1 accuracy on ImageNet under constraints of computational cost.
arXiv Detail & Related papers (2022-10-17T13:32:59Z) - Multi-agent Deep Reinforcement Learning for Charge-sustaining Control of
Multi-mode Hybrid Vehicles [9.416703139663705]
Transportation electrification requires an increasing number of electric components on vehicles.
This paper focuses on the online optimization of energy management strategy for a multi-mode hybrid electric vehicle.
A new collaborative cyber-physical learning with multi-agents is proposed.
arXiv Detail & Related papers (2022-09-06T16:40:55Z) - Stabilizing Voltage in Power Distribution Networks via Multi-Agent
Reinforcement Learning with Transformer [128.19212716007794]
We propose a Transformer-based Multi-Agent Actor-Critic framework (T-MAAC) to stabilize voltage in power distribution networks.
In addition, we adopt a novel auxiliary-task training process tailored to the voltage control task, which improves the sample efficiency.
arXiv Detail & Related papers (2022-06-08T07:48:42Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Energy-Efficient Multi-Orchestrator Mobile Edge Learning [54.28419430315478]
Mobile Edge Learning (MEL) is a collaborative learning paradigm that features distributed training of Machine Learning (ML) models over edge devices.
In MEL, possible coexistence of multiple learning tasks with different datasets may arise.
We propose lightweight algorithms that can achieve near-optimal performance and facilitate the trade-offs between energy consumption, accuracy, and solution complexity.
arXiv Detail & Related papers (2021-09-02T07:37:10Z) - Softmax with Regularization: Better Value Estimation in Multi-Agent
Reinforcement Learning [72.28520951105207]
Overestimation in $Q$-learning is an important problem that has been extensively studied in single-agent reinforcement learning.
We propose a novel regularization-based update scheme that penalizes large joint action-values deviating from a baseline.
We show that our method provides a consistent performance improvement on a set of challenging StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2021-03-22T14:18:39Z) - Multi-Objective Reinforcement Learning based Multi-Microgrid System
Optimisation Problem [4.338938227238059]
Microgrids with energy storage systems and distributed renewable energy sources play a crucial role in reducing the consumption from traditional power sources and the emission of $CO$.
Connecting multi microgrid to a distribution power grid can facilitate a more robust and reliable operation to increase the security and privacy of the system.
The proposed model consists of three layers, smart grid layer, independent system operator (ISO) layer and power grid layer.
arXiv Detail & Related papers (2021-03-10T23:01:22Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.