An Improved Two-Archive Evolutionary Algorithm for Constrained
Multi-Objective Optimization
- URL: http://arxiv.org/abs/2103.06382v1
- Date: Wed, 10 Mar 2021 23:04:02 GMT
- Title: An Improved Two-Archive Evolutionary Algorithm for Constrained
Multi-Objective Optimization
- Authors: Xinyu Shan, Ke Li
- Abstract summary: A recently proposed two-archive evolutionary algorithm for constrained multi-objective optimization (C-TAEA) has be shown as a latest algorithm.
We propose an improved version C-TAEA, dubbed C-TAEA-II, featuring an improved update mechanism of two co-evolving archives and an adaptive mating selection mechanism.
- Score: 5.760976250387322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Constrained multi-objective optimization problems (CMOPs) are ubiquitous in
real-world engineering optimization scenarios. A key issue in constrained
multi-objective optimization is to strike a balance among convergence,
diversity and feasibility. A recently proposed two-archive evolutionary
algorithm for constrained multi-objective optimization (C-TAEA) has be shown as
a latest algorithm. However, due to its simple implementation of the
collaboration mechanism between its two co-evolving archives, C-TAEA is
struggling when solving problems whose \textit{pseudo} Pareto-optimal front,
which does not take constraints into consideration, dominates the
\textit{feasible} Pareto-optimal front. In this paper, we propose an improved
version C-TAEA, dubbed C-TAEA-II, featuring an improved update mechanism of two
co-evolving archives and an adaptive mating selection mechanism to promote a
better collaboration between co-evolving archives. Empirical results
demonstrate the competitiveness of the proposed C-TAEA-II in comparison with
five representative constrained evolutionary multi-objective optimization
algorithms.
Related papers
- Evolutionary Alternating Direction Method of Multipliers for Constrained
Multi-Objective Optimization with Unknown Constraints [17.392113376816788]
Constrained multi-objective optimization problems (CMOPs) pervade real-world applications in science, engineering, and design.
We present the first of its kind evolutionary optimization framework, inspired by the principles of the alternating direction method of multipliers that decouples objective and constraint functions.
Our framework tackles CMOPs with unknown constraints by reformulating the original problem into an additive form of two subproblems, each of which is allotted a dedicated evolutionary population.
arXiv Detail & Related papers (2024-01-02T00:38:20Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
We study the problem of distributed multi-level optimization over a network, where agents can only communicate with their immediate neighbors.
We propose a novel gossip-based distributed multi-level optimization algorithm that enables networked agents to solve optimization problems at different levels in a single timescale.
Our algorithm achieves optimal sample complexity, scaling linearly with the network size, and demonstrates state-of-the-art performance on various applications.
arXiv Detail & Related papers (2023-10-10T00:21:10Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - Algorithm for Constrained Markov Decision Process with Linear
Convergence [55.41644538483948]
An agent aims to maximize the expected accumulated discounted reward subject to multiple constraints on its costs.
A new dual approach is proposed with the integration of two ingredients: entropy regularized policy and Vaidya's dual.
The proposed approach is shown to converge (with linear rate) to the global optimum.
arXiv Detail & Related papers (2022-06-03T16:26:38Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
Multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been regarded as a significantly promising approach for solving multiobjective optimization problems (MOPs)
We propose an improved MOEA/D algorithm by virtue of the well-known Pascoletti-Serafini scalarization method and a new strategy of multi-reference points.
arXiv Detail & Related papers (2021-10-27T02:07:08Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
We propose a framework for implementing batched data-driven evolutionary multi-objective optimization.
It is so general that any off-the-shelf evolutionary multi-objective optimization algorithms can be applied in a plug-in manner.
Our proposed framework is featured with a faster convergence and a stronger resilience to various PF shapes.
arXiv Detail & Related papers (2021-09-12T23:54:26Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z) - Enhanced Innovized Repair Operator for Evolutionary Multi- and
Many-objective Optimization [5.885238773559015]
"Innovization" is a task of learning common relationships among some or all of the Pareto-optimal (PO) solutions in optimisation problems.
Recent studies have shown that a chronological sequence of non-dominated solutions also possess salient patterns that can be used to learn problem features.
We propose a machine-learning- (ML-) assisted modelling approach that learns the modifications in design variables needed to advance population members towards the Pareto-optimal set.
arXiv Detail & Related papers (2020-11-21T10:29:15Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - dMFEA-II: An Adaptive Multifactorial Evolutionary Algorithm for
Permutation-based Discrete Optimization Problems [6.943742860591444]
We propose the first adaptation of the recently introduced Multifactorial Evolutionary Algorithm II (MFEA-II) to permutation-based discrete environments.
The performance of the proposed solver has been assessed over 5 different multitasking setups.
arXiv Detail & Related papers (2020-04-14T14:42:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.