論文の概要: PREPRINT: Comparison of deep learning and hand crafted features for
mining simulation data
- arxiv url: http://arxiv.org/abs/2103.06552v1
- Date: Thu, 11 Mar 2021 09:28:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-12 14:45:51.577562
- Title: PREPRINT: Comparison of deep learning and hand crafted features for
mining simulation data
- Title(参考訳): PrePRINT: マイニングシミュレーションデータのためのディープラーニングと手作業の機能の比較
- Authors: Theodoros Georgiou, Sebastian Schmitt, Thomas B\"ack, Nan Pu, Wei
Chen, Michael Lew
- Abstract要約: 本稿では,高次元データセットから有意な結果を自動抽出する作業について述べる。
このようなデータを処理することができる深層学習手法を提案し、シミュレーションデータに関する関連するタスクを解決するように訓練することができる。
16,000フローフィールドを含む翼まわりの流れ場の2次元シミュレーションの大規模なデータセットをコンパイルし,比較を行った。
- 参考スコア(独自算出の注目度): 7.214140640112874
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Computational Fluid Dynamics (CFD) simulations are a very important tool for
many industrial applications, such as aerodynamic optimization of engineering
designs like cars shapes, airplanes parts etc. The output of such simulations,
in particular the calculated flow fields, are usually very complex and hard to
interpret for realistic three-dimensional real-world applications, especially
if time-dependent simulations are investigated. Automated data analysis methods
are warranted but a non-trivial obstacle is given by the very large
dimensionality of the data. A flow field typically consists of six measurement
values for each point of the computational grid in 3D space and time (velocity
vector values, turbulent kinetic energy, pressure and viscosity). In this paper
we address the task of extracting meaningful results in an automated manner
from such high dimensional data sets. We propose deep learning methods which
are capable of processing such data and which can be trained to solve relevant
tasks on simulation data, i.e. predicting drag and lift forces applied on an
airfoil. We also propose an adaptation of the classical hand crafted features
known from computer vision to address the same problem and compare a large
variety of descriptors and detectors. Finally, we compile a large dataset of 2D
simulations of the flow field around airfoils which contains 16000 flow fields
with which we tested and compared approaches. Our results show that the deep
learning-based methods, as well as hand crafted feature based approaches, are
well-capable to accurately describe the content of the CFD simulation output on
the proposed dataset.
- Abstract(参考訳): 数値流体力学(CFD)シミュレーションは、自動車形状、航空機部品などの工学設計の空力最適化など、多くの産業用途にとって非常に重要なツールです。
このようなシミュレーションの出力、特に計算された流れ場の出力は通常非常に複雑であり、特に時間依存のシミュレーションが研究される場合、現実的な3次元実世界の応用には解釈が難しい。
自動データ解析手法は保証されるが、データの非常に大きな次元によって非自明な障害が与えられる。
流れ場は典型的には3次元空間と時間(速度ベクトル値、乱流運動エネルギー、圧力、粘性)の計算格子の各点について6つの測定値からなる。
本稿では,このような高次元データセットから有意義な結果を自動抽出するタスクについて述べる。
このようなデータを処理できる深層学習手法を提案し,シミュレーションデータにおける関連する課題を解決するための訓練を行う。
空気翼に作用する抵抗と昇降力を予測すること。
また,同じ問題に対処し,多種多様なディスクリプタと検出器を比較するために,コンピュータビジョンから知られている古典的な手作り特徴の適応を提案する。
最後に,16,000フローフィールドを含む翼まわりの流れ場の2次元シミュレーションの大規模なデータセットをコンパイルし,比較を行った。
本研究では,深層学習に基づく手法と手作業による特徴に基づく手法により,提案データセット上のCFDシミュレーション出力の内容を的確に記述できることを示した。
関連論文リスト
- FlowBench: A Large Scale Benchmark for Flow Simulation over Complex
Geometries [19.15738125919099]
FlowBenchは10K以上のサンプルを持つニューラルシミュレータ用のデータセットである。
FlowBenchは、複雑な幾何学、結合フロー現象、およびニューラルPDEソルバの性能に関するデータ十分性の間の相互作用を評価することができる。
論文 参考訳(メタデータ) (2024-09-26T16:38:48Z) - GIC: Gaussian-Informed Continuum for Physical Property Identification and Simulation [60.33467489955188]
本稿では,視覚的観察を通して物理特性(システム同定)を推定する問題について検討する。
物理特性推定における幾何学的ガイダンスを容易にするために,我々は新しいハイブリッドフレームワークを提案する。
本研究では,3次元ガウス点集合としてオブジェクトを復元する動き分解に基づく動的3次元ガウスフレームワークを提案する。
抽出された物体表面に加えて、ガウスインフォームド連続体はシミュレーション中の物体マスクのレンダリングを可能にする。
論文 参考訳(メタデータ) (2024-06-21T07:37:17Z) - PointSAGE: Mesh-independent superresolution approach to fluid flow predictions [0.0]
高分解能CFDシミュレーションは流体挙動や流れパターンに関する貴重な洞察を提供する。
解像度が大きくなると、計算データ要求と時間の増加が比例する。
複雑な流体の流れを学習し,シミュレーションを直接予測するメッシュ非依存のネットワークであるPointSAGEを提案する。
論文 参考訳(メタデータ) (2024-04-06T12:49:09Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
大規模偏微分方程式の解演算子を学習するために,幾何インフォームド・ニューラル演算子(GINO)を提案する。
我々はGINOを訓練し、わずか500点のデータポイントで車両表面の圧力を予測することに成功した。
論文 参考訳(メタデータ) (2023-09-01T16:59:21Z) - Spatio-Temporal Surrogates for Interaction of a Jet with High
Explosives: Part I -- Analysis with a Small Sample Size [0.0]
高い爆発物と相互作用するジェットの2次元問題を用いて、高品質なサロゲートをどうやって構築できるかを理解する。
それぞれのシミュレーションから得られるベクトル値出力は200万以上の空間的位置で利用可能である。
我々は、これらの非常に大きなデータセットを分析し、分析に使用されるアルゴリズムのパラメータを設定し、時間的・時間的サロゲートの精度を向上させるために簡単な方法を用いる方法を示す。
論文 参考訳(メタデータ) (2023-07-03T23:10:23Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Learning Similarity Metrics for Volumetric Simulations with Multiscale
CNNs [25.253880881581956]
本研究では,エントロピーに基づく類似性モデルを提案する。
我々は数値PDEソルバと既存のシミュレーションデータリポジトリからフィールドのコレクションを作成する。
ボリューム類似度メトリック(VolSiM)を演算するマルチスケールCNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-02-08T19:19:08Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Positional Encoding Augmented GAN for the Assessment of Wind Flow for
Pedestrian Comfort in Urban Areas [0.41998444721319217]
本研究は,CFDを用いた3次元フローフィールドの計算から,建物のフットプリント上の2次元画像から画像への変換に基づく問題まで,歩行者の高さレベルでのフローフィールドの予測に至るまでの課題を言い換える。
本稿では,画像から画像への変換タスクの最先端を表現したPix2PixやCycleGANなど,GAN(Generative Adversarial Network)の利用について検討する。
論文 参考訳(メタデータ) (2021-12-15T19:37:11Z) - Deep Transformer Networks for Time Series Classification: The NPP Safety
Case [59.20947681019466]
時間依存nppシミュレーションデータをモデル化するために、教師付き学習方法でトランスフォーマと呼ばれる高度なテンポラルニューラルネットワークを使用する。
トランスはシーケンシャルデータの特性を学習し、テストデータセット上で約99%の分類精度で有望な性能が得られる。
論文 参考訳(メタデータ) (2021-04-09T14:26:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。