PREPRINT: Comparison of deep learning and hand crafted features for
mining simulation data
- URL: http://arxiv.org/abs/2103.06552v1
- Date: Thu, 11 Mar 2021 09:28:00 GMT
- Title: PREPRINT: Comparison of deep learning and hand crafted features for
mining simulation data
- Authors: Theodoros Georgiou, Sebastian Schmitt, Thomas B\"ack, Nan Pu, Wei
Chen, Michael Lew
- Abstract summary: This paper addresses the task of extracting meaningful results in an automated manner from high dimensional data sets.
We propose deep learning methods which are capable of processing such data and which can be trained to solve relevant tasks on simulation data.
We compile a large dataset of 2D simulations of the flow field around airfoils which contains 16000 flow fields with which we tested and compared approaches.
- Score: 7.214140640112874
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Computational Fluid Dynamics (CFD) simulations are a very important tool for
many industrial applications, such as aerodynamic optimization of engineering
designs like cars shapes, airplanes parts etc. The output of such simulations,
in particular the calculated flow fields, are usually very complex and hard to
interpret for realistic three-dimensional real-world applications, especially
if time-dependent simulations are investigated. Automated data analysis methods
are warranted but a non-trivial obstacle is given by the very large
dimensionality of the data. A flow field typically consists of six measurement
values for each point of the computational grid in 3D space and time (velocity
vector values, turbulent kinetic energy, pressure and viscosity). In this paper
we address the task of extracting meaningful results in an automated manner
from such high dimensional data sets. We propose deep learning methods which
are capable of processing such data and which can be trained to solve relevant
tasks on simulation data, i.e. predicting drag and lift forces applied on an
airfoil. We also propose an adaptation of the classical hand crafted features
known from computer vision to address the same problem and compare a large
variety of descriptors and detectors. Finally, we compile a large dataset of 2D
simulations of the flow field around airfoils which contains 16000 flow fields
with which we tested and compared approaches. Our results show that the deep
learning-based methods, as well as hand crafted feature based approaches, are
well-capable to accurately describe the content of the CFD simulation output on
the proposed dataset.
Related papers
- FlowBench: A Large Scale Benchmark for Flow Simulation over Complex
Geometries [19.15738125919099]
FlowBench is a dataset for neural simulators with over 10K samples.
FlowBench will enable evaluating the interplay between complex geometry, coupled flow phenomena, and data sufficiency on the performance of neural PDE solvers.
arXiv Detail & Related papers (2024-09-26T16:38:48Z) - GIC: Gaussian-Informed Continuum for Physical Property Identification and Simulation [60.33467489955188]
This paper studies the problem of estimating physical properties (system identification) through visual observations.
To facilitate geometry-aware guidance in physical property estimation, we introduce a novel hybrid framework.
We propose a new dynamic 3D Gaussian framework based on motion factorization to recover the object as 3D Gaussian point sets.
In addition to the extracted object surfaces, the Gaussian-informed continuum also enables the rendering of object masks during simulations.
arXiv Detail & Related papers (2024-06-21T07:37:17Z) - PointSAGE: Mesh-independent superresolution approach to fluid flow predictions [0.0]
High-resolution CFD simulations offer valuable insights into fluid behavior and flow patterns.
As resolution increases, computational data requirements and time increase proportionately.
We propose PointSAGE, a mesh-independent network to learn the complex fluid flow and directly predict fine simulations.
arXiv Detail & Related papers (2024-04-06T12:49:09Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Spatio-Temporal Surrogates for Interaction of a Jet with High
Explosives: Part I -- Analysis with a Small Sample Size [0.0]
We use a two-dimensional problem of a jet interacting with high explosives to understand how we can build high-quality surrogates.
The characteristics of our data set are unique - the vector-valued outputs from each simulation are available at over two million spatial locations.
We show how we analyze these extremely large data-sets, set the parameters for the algorithms used in the analysis, and use simple ways to improve the accuracy of thetemporal-temporal surrogates.
arXiv Detail & Related papers (2023-07-03T23:10:23Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Learning Similarity Metrics for Volumetric Simulations with Multiscale
CNNs [25.253880881581956]
We propose a similarity model based on entropy, which allows for the creation of physically meaningful ground truth distances.
We create collections of fields from numerical PDE solvers and existing simulation data repositories.
A multiscale CNN architecture that computes a volumetric similarity metric (VolSiM) is proposed.
arXiv Detail & Related papers (2022-02-08T19:19:08Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Positional Encoding Augmented GAN for the Assessment of Wind Flow for
Pedestrian Comfort in Urban Areas [0.41998444721319217]
This work rephrases the problem from computing 3D flow fields using CFD to a 2D image-to-image translation-based problem on the building footprints to predict the flow field at pedestrian height level.
We investigate the use of generative adversarial networks (GAN), such as Pix2Pix and CycleGAN representing state-of-the-art for image-to-image translation task in various domains.
arXiv Detail & Related papers (2021-12-15T19:37:11Z) - Deep Transformer Networks for Time Series Classification: The NPP Safety
Case [59.20947681019466]
An advanced temporal neural network referred to as the Transformer is used within a supervised learning fashion to model the time-dependent NPP simulation data.
The Transformer can learn the characteristics of the sequential data and yield promising performance with approximately 99% classification accuracy on the testing dataset.
arXiv Detail & Related papers (2021-04-09T14:26:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.