論文の概要: DynACPD Embedding Algorithm for Prediction Tasks in Dynamic Networks
- arxiv url: http://arxiv.org/abs/2103.07080v1
- Date: Fri, 12 Mar 2021 04:36:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-15 13:32:36.818854
- Title: DynACPD Embedding Algorithm for Prediction Tasks in Dynamic Networks
- Title(参考訳): 動的ネットワークにおける予測課題に対するDynACPD埋め込みアルゴリズム
- Authors: Chris Connell and Yang Wang
- Abstract要約: 本稿では,動的ネットワークのテンソル表現に対する高次テンソル分解に基づく動的ネットワークに対する新しい埋め込み手法を提案する。
リンク予測タスクにおけるアルゴリズムの性能を,現在のベースライン手法の配列と比較することにより,提案手法のパワーと効率を実証する。
- 参考スコア(独自算出の注目度): 6.5361928329696335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classical network embeddings create a low dimensional representation of the
learned relationships between features across nodes. Such embeddings are
important for tasks such as link prediction and node classification. In the
current paper, we consider low dimensional embeddings of dynamic networks, that
is a family of time varying networks where there exist both temporal and
spatial link relationships between nodes. We present novel embedding methods
for a dynamic network based on higher order tensor decompositions for tensorial
representations of the dynamic network. In one sense, our embeddings are
analogous to spectral embedding methods for static networks. We provide a
rationale for our algorithms via a mathematical analysis of some potential
reasons for their effectiveness. Finally, we demonstrate the power and
efficiency of our approach by comparing our algorithms' performance on the link
prediction task against an array of current baseline methods across three
distinct real-world dynamic networks.
- Abstract(参考訳): 古典的なネットワーク埋め込みは、ノード間の特徴間の学習された関係を低次元で表現する。
このような埋め込みは、リンク予測やノード分類などのタスクに重要です。
本稿では,ノード間の時間的および空間的リンク関係が存在する時間変化ネットワーク群である動的ネットワークの低次元埋め込みについて考察する。
本稿では,動的ネットワークのテンソル表現に対する高次テンソル分解に基づく動的ネットワークに対する新しい埋め込み手法を提案する。
ある意味では、我々の埋め込みは静的ネットワークのスペクトル埋め込みメソッドに似ている。
我々は、アルゴリズムの有効性の潜在的な理由を数学的に解析することで、アルゴリズムの理論的根拠を提供する。
最後に、リンク予測タスクにおけるアルゴリズムの性能を、3つの異なる実世界の動的ネットワークにわたる現在のベースライン手法の配列と比較することにより、我々のアプローチのパワーと効率を実証する。
関連論文リスト
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - Accelerating Dynamic Network Embedding with Billions of Parameter
Updates to Milliseconds [27.98359191399847]
本稿では,ノードごとの更新ではなく,埋め込み空間の軸を回転させ,拡張する新しい動的ネットワーク埋め込みパラダイムを提案する。
具体的には,DAMF(Dynamic Adjacency Matrix Factorization)アルゴリズムを提案する。
異なるサイズの動的グラフ上でのノード分類、リンク予測、グラフ再構成の実験は、DAMFが動的ネットワーク埋め込みを進めることを示唆している。
論文 参考訳(メタデータ) (2023-06-15T09:02:17Z) - Backpropagation on Dynamical Networks [0.0]
本稿では,リカレントニューラルネットワークのトレーニングによく使用されるBPTTアルゴリズムに基づくネットワーク推論手法を提案する。
局所ノードダイナミクスの近似は、まずニューラルネットワークを用いて構築される。
得られた局所モデルと重み付けによるフリーラン予測性能は、真のシステムに匹敵することがわかった。
論文 参考訳(メタデータ) (2022-07-07T05:22:44Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
本稿では,時間グラフネットワークに基づく動的ネットワーク表現学習のための新しいアプローチを提案する。
評価のために、時間的ネットワーク埋め込みの評価のためのベンチマークパイプラインを提供する。
欧州の大手銀行が提供した実世界のダウンストリームグラフ機械学習タスクにおいて、我々のモデルの適用性と優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-19T15:39:52Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
本稿では,任意の数のランダム接続ノードを持つ無線ネットワークにおいて,分散最適化タスクに取り組む機械学習戦略を提案する。
我々は,ネットワークトポロジとは無関係に,前方および後方に計算を行う分散メッセージパスニューラルネットワーク(DMPNN)と呼ばれる,柔軟な深層ニューラルネットワーク形式を開発した。
論文 参考訳(メタデータ) (2021-06-15T09:03:28Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
動的グラフネットワーク(DG-Net)は完全な有向非巡回グラフであり、ノードは畳み込みブロックを表し、エッジは接続経路を表す。
ネットワークの同じパスを使用する代わりに、DG-Netは各ノードの機能を動的に集約する。
論文 参考訳(メタデータ) (2020-10-02T16:50:26Z) - MODEL: Motif-based Deep Feature Learning for Link Prediction [23.12527010960999]
本稿では,ネットワークモチーフを組み込んだ新しい埋め込みアルゴリズムを提案する。
実験は、ソーシャルネットワーク、生物学的ネットワーク、学術ネットワークの3種類のネットワークで実施された。
我々のアルゴリズムは従来の類似性に基づくアルゴリズムを20%、組込み型アルゴリズムを19%上回っている。
論文 参考訳(メタデータ) (2020-08-09T03:39:28Z) - Link Prediction for Temporally Consistent Networks [6.981204218036187]
リンク予測は、動的ネットワークにおける次の関係を推定する。
動的に進化するネットワークを表現するための隣接行列の使用は、異種、スパース、またはネットワーク形成から解析的に学習する能力を制限する。
時間的パラメータ化ネットワークモデルとして不均一な時間進化活動を表現する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-06-06T07:28:03Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
我々はDyHATRと呼ばれる新しい動的ヘテロジニアスネットワーク埋め込み法を提案する。
階層的な注意を使って異質な情報を学習し、進化パターンを捉えるために時間的注意を伴う繰り返しニューラルネットワークを組み込む。
リンク予測のための4つの実世界のデータセットに対して,本手法をベンチマークした。
論文 参考訳(メタデータ) (2020-04-01T17:16:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。