論文の概要: A Review on Semi-Supervised Relation Extraction
- arxiv url: http://arxiv.org/abs/2103.07575v1
- Date: Fri, 12 Mar 2021 23:43:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-18 07:56:35.479635
- Title: A Review on Semi-Supervised Relation Extraction
- Title(参考訳): 半教師付き関係抽出に関するレビュー
- Authors: Yusen Lin
- Abstract要約: 関係抽出は、構造化されていないテキストから知識を抽出する上で重要な役割を果たす。
高価なアノテーションを減らすために、半教師付き学習はラベル付きデータとラベルなしデータの両方を活用することを目的としている。
本稿では,半教師付きREにおける3つの典型的な手法を,ディープラーニングやメタラーニングと比較する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Relation extraction (RE) plays an important role in extracting knowledge from
unstructured text but requires a large amount of labeled corpus. To reduce the
expensive annotation efforts, semisupervised learning aims to leverage both
labeled and unlabeled data. In this paper, we review and compare three typical
methods in semi-supervised RE with deep learning or meta-learning:
self-ensembling, which forces consistent under perturbations but may confront
insufficient supervision; self-training, which iteratively generates pseudo
labels and retrain itself with the enlarged labeled set; dual learning, which
leverages a primal task and a dual task to give mutual feedback. Mean-teacher
(Tarvainen and Valpola, 2017), LST (Li et al., 2019), and DualRE (Lin et al.,
2019) are elaborated as the representatives to alleviate the weakness of these
three methods, respectively.
- Abstract(参考訳): 関係抽出(RE)は、構造化されていないテキストから知識を抽出する上で重要な役割を果たすが、大量のラベル付きコーパスを必要とする。
高価なアノテーションを減らすために、半教師付き学習はラベル付きデータとラベルなしデータの両方を活用することを目的としている。
本稿では,半教師型REと深層学習,メタラーニングの3つの典型的な手法をレビュー・比較する: 摂動下で一貫した力を持つが,監督が不十分な自己学習,擬似ラベルを反復的に生成し,拡張されたラベルセットで再学習する自己学習,予備的タスクと二重タスクを併用して相互フィードバックを行う二重学習。
平均教師 (Tarvainen と Valpola, 2017), LST (Li et al., 2019), DualRE (Lin et al., 2019) は, これら3つの手法の弱点を緩和する代表として, それぞれ詳しく説明されている。
関連論文リスト
- ACTRESS: Active Retraining for Semi-supervised Visual Grounding [52.08834188447851]
前回の研究であるRefTeacherは、疑似自信と注意に基づく監督を提供するために教師学生の枠組みを採用することで、この課題に取り組むための最初の試みである。
このアプローチは、Transformerベースのパイプラインに従う現在の最先端のビジュアルグラウンドモデルと互換性がない。
本稿では, ACTRESS を略したセミスーパービジョン視覚グラウンドのためのアクティブ・リトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-07-03T16:33:31Z) - Grasping the Essentials: Tailoring Large Language Models for Zero-Shot Relation Extraction [33.528688487954454]
関係抽出(RE)は、テキスト内のエンティティ間の意味的関係を識別することを目的としている。
アノテーションの要求を減らすことを目的とした、ほとんどショットの学習は、通常、ターゲット関係に対する不完全で偏見のある監視を提供する。
1)大言語モデル(LLM)を利用して,関係定義とラベルなしコーパスから初期シードインスタンスを生成する。
論文 参考訳(メタデータ) (2024-02-17T00:20:06Z) - Learning from Semi-Factuals: A Debiased and Semantic-Aware Framework for
Generalized Relation Discovery [12.716874398564482]
Generalized Relation Discovery (GRD) は、既存の事前定義された関係にある未ラベルのインスタンスを特定したり、新しい関係を発見することを目的としている。
本稿では,2段階の半実物から学習することで,この課題に対する新しいフレームワーク,SFGRDを提案する。
SFGRDの精度は2.36%$sim$5.78%、コサイン類似度は32.19%$sim$84.45%である。
論文 参考訳(メタデータ) (2024-01-12T02:38:55Z) - 2D Feature Distillation for Weakly- and Semi-Supervised 3D Semantic
Segmentation [92.17700318483745]
合成訓練された2Dセマンティックセマンティックセグメンテーションネットワークから高レベル特徴情報を蒸留するアイデアに基づく画像誘導ネットワーク(IGNet)を提案する。
IGNetは、ScribbleKITTI上の弱い教師付きLiDARセマンティックセマンティックセグメンテーションの最先端の結果を達成し、8%のラベル付きポイントしか持たない完全な教師付きトレーニングに対して最大98%のパフォーマンスを誇っている。
論文 参考訳(メタデータ) (2023-11-27T07:57:29Z) - BitCoin: Bidirectional Tagging and Supervised Contrastive Learning based
Joint Relational Triple Extraction Framework [16.930809038479666]
両方向タギングと教師付きコントラスト学習に基づく連立三重抽出フレームワークであるBitCoinを提案する。
具体的には,1つの正に制限するのではなく,複数の正をアンカー毎に考慮した教師付きコントラスト学習手法を設計する。
本フレームワークは,対象物から対象物へのトリプル抽出を可能にするため,タグを2方向に実装する。
論文 参考訳(メタデータ) (2023-09-21T07:55:54Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Unsupervised 3D registration through optimization-guided cyclical
self-training [71.75057371518093]
最先端のディープラーニングベースの登録方法は、3つの異なる学習戦略を採用している。
本稿では,教師なし登録のための自己指導型学習パラダイムを提案する。
腹部, 肺の登録方法の評価を行い, 測定基準に基づく監督を一貫して上回り, 最先端の競争相手よりも優れていた。
論文 参考訳(メタデータ) (2023-06-29T14:54:10Z) - Few Shot Rationale Generation using Self-Training with Dual Teachers [4.91890875296663]
予測ラベルのフリーテキスト説明も生成するセルフリレーゼーションモデルは、信頼できるAIアプリケーションを構築する上で重要なツールである。
タスク予測と合理化のための2つの専門教師モデルを学ぶ。
新しい損失関数Masked Label Regularization (MLR) を定式化した。
論文 参考訳(メタデータ) (2023-06-05T23:57:52Z) - Gradient Imitation Reinforcement Learning for Low Resource Relation
Extraction [52.63803634033647]
低リソース関係抽出(LRE)は,人間のアノテーションが不足している場合に,ラベル付きコーパスから関係事実を抽出することを目的としている。
我々は、擬似ラベルデータにラベル付きデータへの勾配降下方向を模倣するように促すグラディエント・イミテーション強化学習法を開発した。
また,低リソース関係抽出における2つの主要なシナリオを扱うGradLREというフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-14T03:51:15Z) - Noisy Self-Knowledge Distillation for Text Summarization [83.49809205891496]
我々は, テキスト要約に自己知識蒸留を適用し, 最大習熟時の問題を緩和できると考えている。
学生要約モデルは,学習の正規化を支援するスムーズなラベルを生成する教師の指導によって訓練される。
筆者らは,3つのベンチマークを用いて,事前学習と非事前学習の両方のパフォーマンス向上を実証した。
論文 参考訳(メタデータ) (2020-09-15T12:53:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。