論文の概要: NeuralHumanFVV: Real-Time Neural Volumetric Human Performance Rendering
using RGB Cameras
- arxiv url: http://arxiv.org/abs/2103.07700v1
- Date: Sat, 13 Mar 2021 12:03:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-17 11:11:53.871280
- Title: NeuralHumanFVV: Real-Time Neural Volumetric Human Performance Rendering
using RGB Cameras
- Title(参考訳): neuralhumanfvv: rgbカメラを用いたリアルタイム神経容積ヒトパフォーマンスレンダリング
- Authors: Xin Suo and Yuheng Jiang and Pei Lin and Yingliang Zhang and Kaiwen
Guo and Minye Wu and Lan Xu
- Abstract要約: 没入型VR/AR体験には, 人間の活動の4次元再構築とレンダリングが不可欠である。
近年の進歩は、細かなマルチビューRGBカメラから入力画像の細部まで詳細な形状やテクスチャの再現には至っていない。
本稿では,人間の活動の質の高い幾何学的,フォトリアリスティックなテクスチャを任意の視点で生成する,リアルタイムのニューラルヒューマンパフォーマンスキャプチャとレンダリングシステムを提案する。
- 参考スコア(独自算出の注目度): 17.18904717379273
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 4D reconstruction and rendering of human activities is critical for immersive
VR/AR experience.Recent advances still fail to recover fine geometry and
texture results with the level of detail present in the input images from
sparse multi-view RGB cameras. In this paper, we propose NeuralHumanFVV, a
real-time neural human performance capture and rendering system to generate
both high-quality geometry and photo-realistic texture of human activities in
arbitrary novel views. We propose a neural geometry generation scheme with a
hierarchical sampling strategy for real-time implicit geometry inference, as
well as a novel neural blending scheme to generate high resolution (e.g., 1k)
and photo-realistic texture results in the novel views. Furthermore, we adopt
neural normal blending to enhance geometry details and formulate our neural
geometry and texture rendering into a multi-task learning framework. Extensive
experiments demonstrate the effectiveness of our approach to achieve
high-quality geometry and photo-realistic free view-point reconstruction for
challenging human performances.
- Abstract(参考訳): 没入型VR/AR体験において, 人間の活動の4次元再構成とレンダリングは重要であり, 近年の進歩は, 少ないマルチビューRGBカメラから入力画像の細部まで, 微細な形状やテクスチャの再現に失敗している。
本稿では,人間の活動の高品質な形状とフォトリアリスティックなテクスチャを任意の視点で生成する,リアルタイムのニューラルネットワークによるパフォーマンスキャプチャとレンダリングシステムであるneuralhumanfvvを提案する。
本研究では,リアルタイム暗黙的幾何推論のための階層的サンプリング戦略と,高分解能(1kなど)とフォトリアリスティックなテクスチャを新たに生成するニューラルブレンディング方式を提案する。
さらに、我々はニューラルノーマルブレンディングを採用し、幾何学の詳細を高め、ニューラルジオメトリーとテクスチャレンダリングをマルチタスク学習フレームワークに定式化する。
広範な実験により,高品質な幾何学とフォトリアリスティックな自由視点再構成を実現するためのアプローチの有効性が実証された。
関連論文リスト
- AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction [55.69271635843385]
AniSDF(AniSDF)は,高忠実度3次元再構成のための物理に基づく符号化による融合粒度ニューラルサーフェスを学習する新しいアプローチである。
本手法は, 幾何再構成と新規ビュー合成の両面において, SDF法の品質を飛躍的に向上させる。
論文 参考訳(メタデータ) (2024-10-02T03:10:38Z) - ANIM: Accurate Neural Implicit Model for Human Reconstruction from a single RGB-D image [40.03212588672639]
ANIMは単視点RGB-D画像から任意の3次元形状を前例のない精度で再構成する新しい手法である。
我々のモデルは、深度情報を活用するためにピクセル整列とボクセル整列の両方の機能から幾何学的詳細を学習する。
実験によると、ANIMはRGB、表面正規、ポイントクラウド、RGB-Dデータを入力として使用する最先端の作業よりも優れている。
論文 参考訳(メタデータ) (2024-03-15T14:45:38Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
本稿では,自由視点画像の合成に有効なフレームワークであるGeneralizable Model-based Neural Radiance Fieldsを提案する。
具体的には、多視点2D画像からの出現コードを幾何学的プロキシに登録するための幾何学誘導型アテンション機構を提案する。
論文 参考訳(メタデータ) (2023-03-24T03:32:02Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
そこで我々は,インターネット写真コレクションから効率よく高精度な表面再構成を実現する新しい手法を提案する。
そこで本研究では,これらのシーンにおける再構成性能を評価するための新しいベンチマークとプロトコルを提案する。
論文 参考訳(メタデータ) (2022-05-25T17:59:53Z) - Generalizable Neural Performer: Learning Robust Radiance Fields for
Human Novel View Synthesis [52.720314035084215]
この研究は、一般のディープラーニングフレームワークを使用して、任意の人間の演奏者の自由視点画像を合成することを目的としている。
我々は、汎用的で堅牢な神経体表現を学習するシンプルな、かつ強力なフレームワーク、Generalizable Neural Performer(GNR)を提案する。
GeneBody-1.0とZJU-Mocapの実験は、最近の最先端の一般化可能な手法よりも、我々の手法の堅牢性を示している。
論文 参考訳(メタデータ) (2022-04-25T17:14:22Z) - HDhuman: High-quality Human Novel-view Rendering from Sparse Views [15.810495442598963]
本稿では,人間の再構成ネットワークと画素整合型空間変換器,および幾何学誘導型画素機能統合を用いたレンダリングネットワークを提案する。
提案手法は, 合成データと実世界のデータの両方において, 従来の一般的な手法や特定の手法よりも優れている。
論文 参考訳(メタデータ) (2022-01-20T13:04:59Z) - NeRS: Neural Reflectance Surfaces for Sparse-view 3D Reconstruction in
the Wild [80.09093712055682]
ニューラルリフレクタンスサーフェス(NeRS)と呼ばれる暗黙モデルの表面アナログを導入する。
NeRSは、球に微分される閉じた表面の神経形状の表現を学び、水密な再構成を保証する。
このようなデータから学習可能な表面ベースニューラル再構成は,体積的ニューラルレンダリングに基づく再構成よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-10-14T17:59:58Z) - Neural Free-Viewpoint Performance Rendering under Complex Human-object
Interactions [35.41116017268475]
没入型VR/AR体験と人間の活動理解には,人間と物体の相互作用の4次元再構築が不可欠である。
近年の進歩は、細かなRGB入力から細かな幾何学やテクスチャ結果の回復には至っていない。
本研究では,人間と物体の高画質なテクスチャとフォトリアリスティックなテクスチャを両立させるニューラル・ヒューマン・パフォーマンス・キャプチャー・レンダリングシステムを提案する。
論文 参考訳(メタデータ) (2021-08-01T04:53:54Z) - Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction [76.1612334630256]
我々は、GAN(Generative Adversarial Networks)とDCNN(Deep Convolutional Neural Networks)の力を利用して、単一画像から顔のテクスチャと形状を再構築する。
3次元顔再構成を保存したフォトリアリスティックでアイデンティティに優れた結果を示し, 初めて, 高精度な顔テクスチャ再構成を実現する。
論文 参考訳(メタデータ) (2021-05-16T16:35:44Z) - Multiview Neural Surface Reconstruction by Disentangling Geometry and
Appearance [46.488713939892136]
我々は、未知の幾何学、カメラパラメータ、および表面からカメラに向かって反射された光を近似するニューラルネットワークを同時に学習するニューラルネットワークを導入する。
我々は、DTU MVSデータセットから、異なる素材特性、照明条件、ノイズの多いカメラ素材を実世界の2D画像でトレーニングした。
論文 参考訳(メタデータ) (2020-03-22T10:20:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。