論文の概要: AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction
- arxiv url: http://arxiv.org/abs/2410.01202v1
- Date: Wed, 2 Oct 2024 03:10:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 22:40:58.344176
- Title: AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction
- Title(参考訳): AniSDF:高忠実度3次元再構成のための異方性符号化を用いた融解粒状神経表面
- Authors: Jingnan Gao, Zhuo Chen, Yichao Yan, Xiaokang Yang,
- Abstract要約: AniSDF(AniSDF)は,高忠実度3次元再構成のための物理に基づく符号化による融合粒度ニューラルサーフェスを学習する新しいアプローチである。
本手法は, 幾何再構成と新規ビュー合成の両面において, SDF法の品質を飛躍的に向上させる。
- 参考スコア(独自算出の注目度): 55.69271635843385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural radiance fields have recently revolutionized novel-view synthesis and achieved high-fidelity renderings. However, these methods sacrifice the geometry for the rendering quality, limiting their further applications including relighting and deformation. How to synthesize photo-realistic rendering while reconstructing accurate geometry remains an unsolved problem. In this work, we present AniSDF, a novel approach that learns fused-granularity neural surfaces with physics-based encoding for high-fidelity 3D reconstruction. Different from previous neural surfaces, our fused-granularity geometry structure balances the overall structures and fine geometric details, producing accurate geometry reconstruction. To disambiguate geometry from reflective appearance, we introduce blended radiance fields to model diffuse and specularity following the anisotropic spherical Gaussian encoding, a physics-based rendering pipeline. With these designs, AniSDF can reconstruct objects with complex structures and produce high-quality renderings. Furthermore, our method is a unified model that does not require complex hyperparameter tuning for specific objects. Extensive experiments demonstrate that our method boosts the quality of SDF-based methods by a great scale in both geometry reconstruction and novel-view synthesis.
- Abstract(参考訳): ニューラルラディアンス場は、最近、新しいビュー合成に革命をもたらし、高忠実度レンダリングを実現した。
しかし、これらの手法はレンダリング品質の幾何を犠牲にして、リライティングや変形を含むさらなる応用を制限している。
正確な幾何学を再構築しながら、フォトリアリスティックレンダリングをどのように合成するかは未解決の問題である。
本研究では,高忠実度3次元再構成のための物理に基づく符号化による融合粒度ニューラル表面の学習手法であるAniSDFを提案する。
従来のニューラルサーフェスとは異なり、我々の融合粒度幾何学構造は全体構造と微細な幾何学的詳細とのバランスを保ち、正確な幾何学的再構成をもたらす。
物理に基づくレンダリングパイプラインである異方性球面ガウス符号化の後, 拡散と特異性をモデル化するための混合放射場を導入する。
これらの設計により、AniSDFは複雑な構造でオブジェクトを再構成し、高品質なレンダリングを生成することができる。
さらに,本手法は,特定の対象に対して複雑なハイパーパラメータチューニングを必要としない統一モデルである。
大規模な実験により,本手法は幾何再構成と新規ビュー合成の両方において,SDF法の品質を飛躍的に向上させることが示された。
関連論文リスト
- DreamPolish: Domain Score Distillation With Progressive Geometry Generation [66.94803919328815]
本稿では,高精細な幾何学と高品質なテクスチャの創出に優れたテキスト・ツー・3D生成モデルであるDreamPolishを紹介する。
幾何構成フェーズでは, 合成過程の安定性を高めるために, 複数のニューラル表現を利用する。
テクスチャ生成フェーズでは、そのような領域に向けて神経表現を導くために、新しいスコア蒸留、すなわちドメインスコア蒸留(DSD)を導入する。
論文 参考訳(メタデータ) (2024-11-03T15:15:01Z) - RaNeuS: Ray-adaptive Neural Surface Reconstruction [87.20343320266215]
微分可能放射場 eg NeRF を利用して、新しいビューレンダリングを生成するとともに、詳細な3次元表面を再構成する。
本研究では,SDFから放射場への射影を一様等間隔のアイコニカル正規化で定式化し,最適化することを考えると,光度重み付け係数を改良する。
提案する textitRaNeuS は,合成データと実データの両方で広く評価されている。
論文 参考訳(メタデータ) (2024-06-14T07:54:25Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
画像からテクスチャ化された表面メッシュを生成する新しいフレームワークを提案する。
我々のアプローチは、NeRFを用いて幾何学とビュー依存の外観を効率的に初期化することから始まります。
ジオメトリと共同で外観を洗練し、テクスチャ画像に変換してリアルタイムレンダリングします。
論文 参考訳(メタデータ) (2023-03-03T17:14:44Z) - HR-NeuS: Recovering High-Frequency Surface Geometry via Neural Implicit
Surfaces [6.382138631957651]
我々は新しい暗黙表面再構成法であるHigh-Resolution NeuSを提案する。
HR-NeuSは大規模な再構成精度を維持しながら高周波表面形状を復元する。
我々は,DTUおよびBlendedMVSデータセットを用いた実験により,従来の手法と同等の精度で定性的に詳細かつ定量的な3次元測地を生成できることを実証した。
論文 参考訳(メタデータ) (2023-02-14T02:25:16Z) - NeuralUDF: Learning Unsigned Distance Fields for Multi-view
Reconstruction of Surfaces with Arbitrary Topologies [87.06532943371575]
本稿では2次元画像からボリュームレンダリングにより任意の位相で表面を再構成する新しい手法であるNeuralUDFを提案する。
本稿では,表面をUDF(Unsigned Distance Function)として表現し,ニューラルUDF表現を学習するための新しいボリュームレンダリング手法を提案する。
論文 参考訳(メタデータ) (2022-11-25T15:21:45Z) - Recovering Fine Details for Neural Implicit Surface Reconstruction [3.9702081347126943]
そこで我々はD-NeuSを提案する。D-NeuSは、微細な幾何学的詳細を復元できるボリュームレンダリング型ニューラル暗示表面再構成法である。
我々は,SDFゼロクロスの補間により表面点に多視点の特徴的整合性を付与する。
本手法は,高精度な表面を細部で再構成し,その性能を向上する。
論文 参考訳(メタデータ) (2022-11-21T10:06:09Z) - Geo-Neus: Geometry-Consistent Neural Implicit Surfaces Learning for
Multi-view Reconstruction [41.43563122590449]
多視点再構成のための幾何一貫性のあるニューラルサーフェス学習を提案する。
提案手法は, 複雑な薄板構造と大きな平滑領域の両方において, 高品質な表面再構成を実現する。
論文 参考訳(メタデータ) (2022-05-31T14:52:07Z) - PVSeRF: Joint Pixel-, Voxel- and Surface-Aligned Radiance Field for
Single-Image Novel View Synthesis [52.546998369121354]
シングルビューRGB画像からニューラル放射場を再構成する学習フレームワークPVSeRFを提案する。
本稿では,明示的な幾何学的推論を取り入れ,放射場予測のための画素アラインな特徴と組み合わせることを提案する。
このような幾何学的特徴の導入は、外観と幾何学の絡み合いを改善するのに有効であることを示す。
論文 参考訳(メタデータ) (2022-02-10T07:39:47Z) - Multiview Neural Surface Reconstruction by Disentangling Geometry and
Appearance [46.488713939892136]
我々は、未知の幾何学、カメラパラメータ、および表面からカメラに向かって反射された光を近似するニューラルネットワークを同時に学習するニューラルネットワークを導入する。
我々は、DTU MVSデータセットから、異なる素材特性、照明条件、ノイズの多いカメラ素材を実世界の2D画像でトレーニングした。
論文 参考訳(メタデータ) (2020-03-22T10:20:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。