Problem-fluent models for complex decision-making in autonomous
materials research
- URL: http://arxiv.org/abs/2103.07776v1
- Date: Sat, 13 Mar 2021 19:23:40 GMT
- Title: Problem-fluent models for complex decision-making in autonomous
materials research
- Authors: Soojung Baek, Kristofer G. Reyes
- Abstract summary: We highlight the coupling of machine learning methods and models and more problem-aware modeling.
We review the general Bayesian framework for closed-loop design employed by many autonomous materials platforms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We review our recent work in the area of autonomous materials research,
highlighting the coupling of machine learning methods and models and more
problem-aware modeling. We review the general Bayesian framework for
closed-loop design employed by many autonomous materials platforms. We then
provide examples of our work on such platforms. We finally review our
approaches to extend current statistical and ML models to better reflect
problem-specific structure including the use of physics-based models and
incorporation of operational considerations into the decision-making procedure.
Related papers
- Configurable Foundation Models: Building LLMs from a Modular Perspective [115.63847606634268]
A growing tendency to decompose LLMs into numerous functional modules allows for inference with part of modules and dynamic assembly of modules to tackle complex tasks.
We coin the term brick to represent each functional module, designating the modularized structure as customizable foundation models.
We present four brick-oriented operations: retrieval and routing, merging, updating, and growing.
We find that the FFN layers follow modular patterns with functional specialization of neurons and functional neuron partitions.
arXiv Detail & Related papers (2024-09-04T17:01:02Z) - Towards Synthetic Trace Generation of Modeling Operations using In-Context Learning Approach [1.8874331450711404]
We propose a conceptual framework that combines modeling event logs, intelligent modeling assistants, and the generation of modeling operations.
In particular, the architecture comprises modeling components that help the designer specify the system, record its operation within a graphical modeling environment, and automatically recommend relevant operations.
arXiv Detail & Related papers (2024-08-26T13:26:44Z) - Beyond development: Challenges in deploying machine learning models for structural engineering applications [2.6415688445750383]
This paper aims to illustrate the challenges of developing machine learning models suitable for deployment through two illustrative examples.
Among various pitfalls, the presented discussion focuses on model overfitting and underspecification, training data representativeness, variable omission bias, and cross-validation.
Results highlight the importance of implementing rigorous model validation techniques through adaptive sampling, careful physics-informed feature selection, and considerations of both model complexity and generalizability.
arXiv Detail & Related papers (2024-04-18T23:40:42Z) - Identifying Simulation Model Through Alternative Techniques for a
Medical Device Assembly Process [0.0]
This scientific paper explores two distinct approaches for identifying and approximating the simulation model.
Our goal is to create adaptable models that accurately represent the snap process and can accommodate diverse scenarios.
arXiv Detail & Related papers (2023-09-26T17:40:29Z) - ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model
Reuse [59.500060790983994]
This paper introduces ZhiJian, a comprehensive and user-friendly toolbox for model reuse, utilizing the PyTorch backend.
ZhiJian presents a novel paradigm that unifies diverse perspectives on model reuse, encompassing target architecture construction with PTM, tuning target model with PTM, and PTM-based inference.
arXiv Detail & Related papers (2023-08-17T19:12:13Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Foundation Models for Decision Making: Problems, Methods, and
Opportunities [124.79381732197649]
Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks.
New paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning.
Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems.
arXiv Detail & Related papers (2023-03-07T18:44:07Z) - Modular Deep Learning [120.36599591042908]
Transfer learning has recently become the dominant paradigm of machine learning.
It remains unclear how to develop models that specialise towards multiple tasks without incurring negative interference.
Modular deep learning has emerged as a promising solution to these challenges.
arXiv Detail & Related papers (2023-02-22T18:11:25Z) - Deep Learning for Choice Modeling [5.173001988341294]
We develop deep learning-based choice models under two settings of choice modeling: feature-free and feature-based.
Our model captures both the intrinsic utility for each candidate choice and the effect that the assortment has on the choice probability.
arXiv Detail & Related papers (2022-08-19T13:10:17Z) - A review of approaches to modeling applied vehicle routing problems [77.34726150561087]
We review the approaches for modeling vehicle routing problems.
We formulate several criteria for evaluating modeling methods.
We discuss several future research avenues in the field of modeling VRP domains.
arXiv Detail & Related papers (2021-05-23T14:50:14Z) - Bayesian Stress Testing of Models in a Classification Hierarchy [0.0]
Building a machine learning solution in real-life applications often involves the decomposition of the problem into multiple models of various complexity.
We propose a Bayesian framework to model the interaction amongst models in such a hierarchy.
We show that the framework can facilitate stress testing of the overall solution, giving more confidence in its expected performance prior to active deployment.
arXiv Detail & Related papers (2020-05-25T18:22:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.