論文の概要: Investigating Value of Curriculum Reinforcement Learning in Autonomous
Driving Under Diverse Road and Weather Conditions
- arxiv url: http://arxiv.org/abs/2103.07903v1
- Date: Sun, 14 Mar 2021 12:05:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-16 14:13:58.795860
- Title: Investigating Value of Curriculum Reinforcement Learning in Autonomous
Driving Under Diverse Road and Weather Conditions
- Title(参考訳): 道路・気象条件の異なる自動運転におけるカリキュラム強化学習の価値の検討
- Authors: Anil Ozturk, Mustafa Burak Gunel, Resul Dagdanov, Mirac Ekim Vural,
Ferhat Yurdakul, Melih Dal, Nazim Kemal Ure
- Abstract要約: 本稿では,自動運転アプリケーションにおけるカリキュラム強化学習の価値を検討する。
道路の複雑さや気象条件の異なる現実的な運転シミュレータで、複数の異なる運転シナリオを設定しました。
その結果、カリキュラムRLは、運転性能とサンプルの複雑さの両方の観点から、複雑な運転タスクで有意な利益を得ることができます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Applications of reinforcement learning (RL) are popular in autonomous driving
tasks. That being said, tuning the performance of an RL agent and guaranteeing
the generalization performance across variety of different driving scenarios is
still largely an open problem. In particular, getting good performance on
complex road and weather conditions require exhaustive tuning and computation
time. Curriculum RL, which focuses on solving simpler automation tasks in order
to transfer knowledge to complex tasks, is attracting attention in RL
community. The main contribution of this paper is a systematic study for
investigating the value of curriculum reinforcement learning in autonomous
driving applications. For this purpose, we setup several different driving
scenarios in a realistic driving simulator, with varying road complexity and
weather conditions. Next, we train and evaluate performance of RL agents on
different sequences of task combinations and curricula. Results show that
curriculum RL can yield significant gains in complex driving tasks, both in
terms of driving performance and sample complexity. Results also demonstrate
that different curricula might enable different benefits, which hints future
research directions for automated curriculum training.
- Abstract(参考訳): 強化学習(RL)の応用は自動運転タスクで人気がある。
とはいえ、RLエージェントのパフォーマンスをチューニングし、さまざまな運転シナリオで一般化のパフォーマンスを保証することは、依然として大きな問題です。
特に、複雑な道路や気象条件で優れた性能を得るには、徹底的なチューニングと計算時間が必要である。
複雑なタスクに知識を移すため、簡単な自動化タスクの解決に重点を置くカリキュラムRLは、RLコミュニティで注目を集めている。
本論文の主な貢献は、自動運転アプリケーションにおけるカリキュラム強化学習の価値を調査するための体系的研究である。
本研究の目的は,道路の複雑度や気象条件の異なる実走行シミュレータにおいて,複数の異なる運転シナリオをセットアップすることである。
次に、タスクの組み合わせとカリキュラムの異なるシーケンスでRLエージェントの性能を訓練し、評価する。
その結果、カリキュラムRLは、運転性能とサンプルの複雑さの両方の観点から、複雑な運転タスクで有意な利益を得ることができます。
結果は、異なるカリキュラムが異なるメリットをもたらす可能性があることも示しており、これは自動カリキュラムトレーニングの今後の研究方向性を示唆している。
関連論文リスト
- Rethinking Closed-loop Training for Autonomous Driving [82.61418945804544]
本研究は,学習エージェントの成功に対する異なるトレーニングベンチマーク設計の影響を分析した最初の実証的研究である。
複数ステップのルックアヘッドで計画を行うRLベースの駆動エージェントであるtrajectory value learning (TRAVL)を提案する。
実験の結果,TRAVLはすべてのベースラインと比較してより速く学習でき,安全な操作が可能であることがわかった。
論文 参考訳(メタデータ) (2023-06-27T17:58:39Z) - Comprehensive Training and Evaluation on Deep Reinforcement Learning for
Automated Driving in Various Simulated Driving Maneuvers [0.4241054493737716]
本研究では、DQN(Deep Q-networks)とTRPO(Trust Region Policy Optimization)の2つのDRLアルゴリズムの実装、評価、比較を行う。
設計されたComplexRoads環境で訓練されたモデルは、他の運転操作にうまく適応でき、全体的な性能が期待できる。
論文 参考訳(メタデータ) (2023-06-20T11:41:01Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - Visual Exemplar Driven Task-Prompting for Unified Perception in
Autonomous Driving [100.3848723827869]
本稿では,タスク固有のプロンプトを通じて視覚的見本を提示する,効果的なマルチタスクフレームワークVE-Promptを提案する。
具体的には、境界ボックスと色に基づくマーカーに基づいて視覚的な例を生成し、ターゲットカテゴリの正確な視覚的外観を提供する。
我々は変圧器をベースとしたエンコーダと畳み込み層を橋渡しし、自律運転における効率的かつ正確な統合認識を実現する。
論文 参考訳(メタデータ) (2023-03-03T08:54:06Z) - Understanding the Complexity Gains of Single-Task RL with a Curriculum [83.46923851724408]
強化学習 (Reinforcement Learning, RL) の問題は, 十分に形が整った報酬なしでは困難である。
カリキュラムで定義されるマルチタスクRL問題として、シングルタスクRL問題を再構成する理論的枠組みを提供する。
マルチタスクRL問題における各タスクの逐次解法は、元の単一タスク問題の解法よりも計算効率がよいことを示す。
論文 参考訳(メタデータ) (2022-12-24T19:46:47Z) - CLUTR: Curriculum Learning via Unsupervised Task Representation Learning [130.79246770546413]
CLUTRは、タスク表現とカリキュラム学習を2段階最適化に分離する、新しいカリキュラム学習アルゴリズムである。
CLUTRは、CarRacingとナビゲーション環境における一般化とサンプル効率の観点から、原則的かつ一般的なUED手法であるPAIREDよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-19T01:45:29Z) - Driver Dojo: A Benchmark for Generalizable Reinforcement Learning for
Autonomous Driving [1.496194593196997]
自律運転のための一般化可能な強化学習のためのベンチマークを提案する。
アプリケーション指向のベンチマークは、設計決定の影響をよりよく理解します。
我々のベンチマークは、研究者がシナリオをまたいでうまく一般化できるソリューションを提案することを奨励することを目的としている。
論文 参考訳(メタデータ) (2022-07-23T06:29:43Z) - Automated Reinforcement Learning (AutoRL): A Survey and Open Problems [92.73407630874841]
AutoRL(Automated Reinforcement Learning)には、AutoMLの標準的なアプリケーションだけでなく、RL特有の課題も含まれている。
我々は共通の分類法を提供し、各領域を詳細に議論し、今後の研究者にとって関心のあるオープンな問題を提起する。
論文 参考訳(メタデータ) (2022-01-11T12:41:43Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
深層模倣強化学習(DIRL)は、視覚入力を使用してアジャイルな自律レースを実現する。
我々は,高忠実性運転シミュレーションと実世界の1/20スケールRC-car上での車載計算の制限により,本アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2021-07-18T00:00:48Z) - Hierarchical Program-Triggered Reinforcement Learning Agents For
Automated Driving [5.404179497338455]
Reinforcement Learning(RL)とDeep Learning(DL)の最近の進歩は、自動運転を含む複雑なタスクで印象的なパフォーマンスを示しています。
本稿では,構造化プログラムと複数のrlエージェントからなる階層構造を用いて,比較的単純なタスクを実行するように訓練した階層型プログラムトリガー型強化学習法を提案する。
検証の焦点はRLエージェントからの単純な保証の下でマスタープログラムにシフトし、複雑なRLエージェントよりも解釈可能で検証可能な実装となる。
論文 参考訳(メタデータ) (2021-03-25T14:19:54Z) - Deep Surrogate Q-Learning for Autonomous Driving [17.30342128504405]
本稿では,自律運転における車線変更行動学習のためのSurrogate Q-learningを提案する。
このアーキテクチャは、Scene-centric Experience Replayと呼ばれる新しいリプレイサンプリング技術に繋がることを示す。
また,本手法は実高Dデータセット上のポリシーを学習することで,実世界のRLシステムの適用性を向上させる。
論文 参考訳(メタデータ) (2020-10-21T19:49:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。