論文の概要: SaNet: Scale-aware neural Network for Parsing Multiple Spatial
Resolution Aerial Images
- arxiv url: http://arxiv.org/abs/2103.07935v1
- Date: Sun, 14 Mar 2021 14:19:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-16 13:55:01.263456
- Title: SaNet: Scale-aware neural Network for Parsing Multiple Spatial
Resolution Aerial Images
- Title(参考訳): SaNet: 空間分解能空中画像解析のためのスケール対応ニューラルネットワーク
- Authors: Libo Wang (School of Remote Sensing and Information Engineering Wuhan
University, China)
- Abstract要約: 複数空間分解能空中画像解析のためのスケールアウェアニューラルネットワーク (SaNet) を提案する。
スケール変動による大小のオブジェクト間の不均衡なセグメンテーション品質に対処するため、SaNetは密に接続されたフィーチャーネットワーク(DCFPN)モジュールを展開します。
情報的特徴損失を軽減するため、SFRモジュールをネットワークに組み込み、空間的関係強化を伴うスケール不変の特徴を学習する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Assigning the geospatial objects of aerial images with categorical
information at the pixel-level is a basic task in urban scene understanding.
However, the huge differencc in remote sensing sensors makes the acqured aerial
images in multiple spatial resolution (MSR), which brings two issues: the
increased scale variation of geospatial objects and informative feature loss as
spatial resolution drops. To address the two issues, we propose a novel
scale-aware neural network (SaNet) for parsing MSR aerial images. For coping
with the imbalanced segmentation quality between larger and smaller objects
caused by the scale variation, the SaNet deploys a densely connected feature
network (DCFPN) module to capture quality multi-scale context with large
receptive fields. To alleviate the informative feature loss, a SFR module is
incorporated into the network to learn scale-invariant features with spatial
relation enhancement. Extensive experimental results on the ISPRS Vaihingen 2D
Dataset and ISPRS Potsdam 2D Dataset demonstrate the outstanding
cross-resolution segmentation ability of the proposed SaNet compared to other
state-of-the-art networks.
- Abstract(参考訳): 画像の地理空間を画素レベルで分類情報で指定することは都市景観理解の基本的な課題である。
しかし、リモートセンシングセンサーの巨大な違いにより、複数の空間分解能(MSR)で空撮された画像は、地理的空間オブジェクトのスケール変動の増加と空間分解能が低下するにつれて情報的特徴の損失という2つの問題を引き起こします。
そこで本研究では,MSR空中画像解析のためのスケールアウェアニューラルネットワーク (SaNet) を提案する。
スケール変動に起因する大小のオブジェクト間の不均衡なセグメンテーション品質に対応するため、SaNetは高密度接続機能ネットワーク(DCFPN)モジュールをデプロイし、大きな受信フィールドを持つ品質のマルチスケールコンテキストをキャプチャする。
情報的特徴損失を軽減するため、SFRモジュールをネットワークに組み込み、空間的関係強化を伴うスケール不変の特徴を学習する。
ISPRS Vaihingen 2DデータセットとISPRS Potsdam 2Dデータセットに関する広範な実験結果は、提案されたSaNetの他の最先端のネットワークと比較して優れたクロス解像度セグメンテーション能力を示しています。
関連論文リスト
- Hi-ResNet: Edge Detail Enhancement for High-Resolution Remote Sensing Segmentation [10.919956120261539]
高分解能リモートセンシング(HRS)セマンティックセマンティクスは、高分解能カバレッジ領域からキーオブジェクトを抽出する。
HRS画像内の同じカテゴリのオブジェクトは、多様な地理的環境におけるスケールと形状の顕著な違いを示す。
効率的なネットワーク構造を持つ高分解能リモートセンシングネットワーク(Hi-ResNet)を提案する。
論文 参考訳(メタデータ) (2023-05-22T03:58:25Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
本稿では,ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とする。
我々は、高解像度の空間的詳細を同時に保存しながら、複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
提案手法は,デフォーカス・デブロアリング,画像デノイング,超解像,画像強調など,さまざまな画像処理タスクに対して,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2022-04-19T17:59:45Z) - SAR-ShipNet: SAR-Ship Detection Neural Network via Bidirectional
Coordinate Attention and Multi-resolution Feature Fusion [7.323279438948967]
本稿では,ニューラルネットワークによる合成開口レーダ(SAR)画像から,事実上有意義な船舶検出問題について検討する。
本稿では,CentralNetに基づく双方向協調注意(BCA)とMRF(Multi- resolution Feature Fusion)を新たに開発したSAR-ShipNet(略してSAR-ShipNet)を提案する。
パブリックなSAR-Shipデータセットの実験結果から,SAR-ShipNetは速度と精度の両面で競争上の優位性を達成していることがわかった。
論文 参考訳(メタデータ) (2022-03-29T12:27:04Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
ランダムな方向と部分的な情報損失によるSAR画像のターゲット形状の変形は、SAR船の検出において必須の課題である。
ターゲット内の部分的な情報損失に頑健なディープネットワークをトレーニングするためのデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2022-02-14T07:01:01Z) - Multi-Content Complementation Network for Salient Object Detection in
Optical Remote Sensing Images [108.79667788962425]
光リモートセンシング画像(RSI-SOD)における有能な物体検出は、いまだに課題である。
本稿では, RSI-SOD における複数コンテンツの相補性を検討するために, MCCNet (Multi-Content Complementation Network) を提案する。
MCCMでは、前景機能、エッジ機能、背景機能、グローバル画像レベル機能など、RSI-SODにとって重要な複数の機能について検討する。
論文 参考訳(メタデータ) (2021-12-02T04:46:40Z) - Sci-Net: a Scale Invariant Model for Building Detection from Aerial
Images [0.0]
本研究では,空間分解能の異なる空間画像に存在している建物を分割できるスケール不変ニューラルネットワーク(Sci-Net)を提案する。
具体的には,U-Netアーキテクチャを改良し,それを高密度なASPP(Atrous Space Pyramid Pooling)で融合し,微細なマルチスケール表現を抽出した。
論文 参考訳(メタデータ) (2021-11-12T16:45:20Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
光リモートセンシング画像(RSI)のためのSODは、光学RSIから視覚的に特徴的な物体や領域を探索・抽出することを目的としている。
光学RSIにおけるSODに並列なマルチスケールアテンションを持つリレーショナル推論ネットワークを提案する。
提案するRRNetは,既存の最先端SODコンペティタよりも質的,定量的に優れている。
論文 参考訳(メタデータ) (2021-10-27T07:18:32Z) - Change Detection from SAR Images Based on Deformable Residual
Convolutional Neural Networks [26.684293663473415]
畳み込みニューラルネットワーク(cnn)は合成開口レーダ(sar)画像変化検出において大きな進歩を遂げている。
本稿では,SAR画像変化検出のための新しいUnderlineDeformable Underline Residual Convolutional Neural UnderlineNetwork (DRNet) を提案する。
論文 参考訳(メタデータ) (2021-04-06T05:52:25Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
本稿では,HSIの空間分解能を高めるために,CUCaNetというクロスアテンション機構を備えた新しい結合型アンミックスネットワークを提案する。
3つの広く使われているHS-MSデータセットに対して、最先端のHSI-SRモデルと比較実験を行った。
論文 参考訳(メタデータ) (2020-07-10T08:08:20Z) - A novel Deep Structure U-Net for Sea-Land Segmentation in Remote Sensing
Images [30.39131853354783]
本稿では,Residual Dense U-Net (RDU-Net) を用いた画素ワイド海面分割のための新しいディープニューラルネットワーク構造を提案する。
RDU-Netは、十分な結果を得るために、ダウンサンプリングとアップサンプリングの2つのパスの組み合わせである。
論文 参考訳(メタデータ) (2020-03-17T16:00:59Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。